
1

Deploying DNS and Sendmail

Hal Pomeranz
Deer Run Associates

All material in this course Copyright © Hal Pomeranz and Deer Run Associates,
1998-2001. All rights reserved.

Hal Pomeranz * Founder/CEO * hal@deer-run.com
Deer Run Associates * PO Box 20370 * Oakland, CA 94620
+1 510-339-7740 (voice) * +1 510-339-3941 (fax)
http://www.deer-run.com/

Sample configuration files supplied in the Appendices can be downloaded as text
files from http://www.deer-run.com/~hal/dns-sendmail/

2

Introduction

• About This Course
• Agenda

This space intentionally left blank.

3

What is This Course?

• An introduction to configuring and
managing DNS and Sendmail

• Hopefully enough to allow you to do
basic administration on your own

• A preparation for more advanced
courses in DNS and Sendmail mgmt

This course will hopefully give you enough information to manage DNS and mail
services for site, assuming you've been handed the job with no other training. It's
not enough just to learn how to configure BIND and Sendmail, you have to
understand something about good architectural principals, as well as have the
knowledge to manage mailing lists, write your own mail programs and auto-
responders, and deal with virtual domains.
With any luck, this course will also prepare you to get additional knowledge on
your own. There are many excellent books and other tutorials which cover more
advanced topics in this area (including Sendmail courses from Eric Allman, the
author of Sendmail, and DNS courses from Paul Vixie, the current maintainer of
BIND).

4

What isn't This Course?

• Complete coverage of the subject

• Free of religious belief

• For people who want PC-based mail

• For experienced DNS/mail admins

• "Hacker's Guide" to DNS or Sendmail

This course should in no way be considered complete coverage of the subject
matter. The O'Reilly Sendmail book alone is just over 1,000 pages. We'll be
covering the areas that are "important"-- a subjective judgment by any standard.
Doubtless other introductory courses would cover different material (and I've sat
through several).
Note that your humble presenter has very strong opinions about deploying and
managing DNS and mail services. I will attempt to note when there are differing
opinions on a particular subject. One area which will hardly be discussed at all
during this talk are PC-based mail systems such as Microsoft Exchange and Lotus
Notes. This is one of those religious beliefs.
This course covers the most basic information regarding DNS and Sendmail. If you
have any substantial amount of experience in this area, you're going to be bored.
Seek a different course now. There are certainly many tricky and interesting things
you can do with DNS and Sendmail, and this course covers none of them. I'd be
happy to talk to anyone about nasty DNS and Sendmail hacks outside of this course.

5

Why DNS and Sendmail?

• DNS is the information system that
allows the Internet to function

• In particular, DNS domains tend to
parallel a company's email domains

• Administrators should plan both
together, but frequently don't

DNS is the great invisible glue which binds the Internet. You tend to only notice it
when it isn't working properly. When DNS isn't working you can't get to your
favorite Web or FTP sites and they wouldn't let you connect even if you could.
While it is possible to have one set of domains from a DNS perspective and one
from an email perspective, it generally makes life easier to use the same domain
names for both. Later in this tutorial we will show how to hide DNS domains: that
is have host names like host.site.eng.domain.com but have users receive
email as user@eng.domain.com.
Because DNS domains and email domains should be related, an organization's
email and DNS architecture should be planned together. Unfortunately, many sites
grow their email and DNS infrastructure "organically" and end up with baroque
configurations when a little forethought could have simplified things substantially.

6

How This Course Works

• We're going to pretend to set up DNS
and mail for a fictional company

• Also covers extra topics like mailing
list management and writing 'bots

• The course only works if you all ask
questions freely!

We're going to do a "soup to nuts" install of a DNS and mail architecture for a
fictional company. Obviously, one rarely gets to set up an entire network at once.
Still, the hope is that you will at some point be faced with setting up DNS and mail
in a situation that resembles one or more examples from our fictional company.
Once we've set up the basic DNS and mail infrastructure, we're going to talk more
about mailing lists, mail programs, and auto responders. We'll also cover (time
permitting) some more in-depth information about getting DNS and email through
your company's firewall.
Asking questions is extremely important. Chances are at any given moment many
folks in the class are wondering the same thing you are. This stuff is all deeply
ingrained in your instructor-- it's your job to remind him that some of it is extremely
non-obvious.

7

Our Fictional Company

So, here's the network overview for Sysiphus Laborers, Incorporated
(sysiphus.com). Actually, the domain name is owned by Deer Run Associates
for use in examples in courses like this one. The name is derived from Greek
mythology: Sysiphus was doomed to roll an enormous rock up a hill for eternity--
just as he reached the top, the rock would slip away and roll down to the bottom of
the hill. A nice metaphor for System/Network Administration...
At the top level, the machine mailgate.sysiphus.com is the primary DNS
server for sysiphus.com. When we talk about getting email through firewalls,
it will also be the main relay point for mail moving into and out of the company.
The corp.sysiphus.com domain contains on primary machine where mail for
users in this domain is kept. These users are PC-based, so we're going to talk about
the right way to do email with PCs here.
The Engineering domain is actually three different physical sites with separate
administration for each site. However, they want all Engineering users to receive
mail as user@eng.sysiphus.com, no matter what their physical location.

8

Agenda

• Introduction

• Building BIND and Sendmail

• Top Level Setup

• The corp Domain

• The Engineering Domain

This is the schedule for the morning:
Introduction-- You're approaching the end of that section now.
Building BIND and Sendmail-- Where to get the standard DNS and Sendmail
distributions and some hints on building and installing them.
Top Level Setup-- Setting up the primary DNS server for sysiphus.com and
getting a basic Sendmail configuration in place.
The corp Domain-- Delegating your first subdomain, setting up email, and doing
POP mail for PCs.
The Engineering Domain-- Lots more domain delegation, some words about aliases,
and hiding DNS domains from mail.

9

Agenda (cont.)

• DNS and Sendmail vs. Firewalls

• Additional BIND Security

• Virtual Domains

• Majordomo and Mailing Lists

• Writing Your Own Mail Programs

• Firewall Configuration (time permitting)

For your enjoyment in the afternoon:
DNS and Sendmail vs. Firewalls-- Split-horizon DNS, clever mail routing tricks,
and stopping the spread of unsolicited commercial email (spam)
Virtual Domains-- Pretending to be some other domain
Majordomo and Mailing Lists-- Using Majordomo to manage your own mailing
lists
Writing Your Own Mail Programs-- Avoid the common mistakes that most first-
time programmers make and write useful applications
Firewall Configuration-- Time allowing, drills down more on exactly what happens
with DNS and Sendmail from a network perspective in the context of getting these
services through your local firewall.

10

Ask Questions!

Did I mention how
important this was?

There is no such thing as a stupid question, merely a stupid instructor…

11

Building BIND and Sendmail

• Where to Get the Software
• Building the Software
• Install Process

Before we can make much progress we have to get the latest versions of BIND and
Sendmail installed on our systems. In general, Operating System vendors have long
QA processes which make it impossible to stay current on Internet supported
software. However, you generally need to run the latest software to avoid security
problems and get the latest features. This means you need to get used to building
this stuff on your own.
This section uses Solaris-specific commands as examples. The build and install
process turns out not to be substantially different on other architectures.

12

BIND -- Build Process

• Get BIND source code
ftp.isc.org

/isc/bind/src/cur/bind-8/bind-*.tar.gz

• Unpack and build
% zcat bind-src.tar.gz | tar xf -

% cd src

% make DST=../obj-solaris SRC=`pwd` links

% cd ../obj-solaris

% vi port/solaris/Makefile.set (see next slide)
% make depend (lots of output)
% make (lots of output)

BIND stands for Berkeley Internet Name Daemon. The code is currently
maintained by the Internet Software Consortium (ISC), and development is being
led by Paul Vixie.
The BIND v8 distribution is actually three tarfiles-- one containing the core sources,
one with contributed sources, and one with documentation. You want all three.
First unpack the tar file you downloaded (note you need the GNU version of zcat
here, ftp://ftp.prep.ai.mit.edu/pub/gnu/gzip*). You don't want
to build the objects in the same directory with the sources (you probably want to
have several different binaries for different platforms), so use make … links to
build a separate link tree. make depend causes the build scripts to figure out
what architecture you're on and set up the Makefiles appropriately.

13

port/solaris/Makefile.set
'CC=gcc'

'CDEBUG=-g -O2'

'DESTBIN=/usr/local/pkg/bind/8.2.x/bin'
'DESTINC=/usr/local/pkg/bind/8.2.x/include'
'DESTLIB=/usr/local/pkg/bind/8.2.x/lib'
'DESTSBIN=/usr/local/pkg/bind/8.2.x/sbin'
'DESTEXEC=/usr/local/pkg/bind/8.2.x/sbin'
'DESTMAN=/usr/local/pkg/bind/8.2.x/man'
'DESTHELP=/usr/local/pkg/bind/8.2.x/lib'
'DESTETC=/etc'

'DESTRUN=/etc'

'PIDDIR=/etc'

'LDS=:'

'LEX=lex'

'YACC=yacc -d'

(… additional lines not shown …)

If you don't change the parameters in Makefile.set, BIND will install itself by
overwriting your OS binaries. We're going to do this later, but you definitely want
this process under your complete control, so install the binaries in their own
repository for now.
Note that DESTLIB and DESTINC are not in Makefile.set by default. You
need to add these lines yourself (note the quotes!).
DESTETC and PIDDIR control the location of the named configuration file and
the named.pid file, respectively.
DESTRUN is the default working directory for BIND. When BIND starts executing,
the name server process changes it's current directory to the value of DESTRUN.
This means that if the process dumps core, the core file will appear in this directory.
This is also the directory where the name server looks for its DNS database files
(aka zone files) by default and where the name server will dump debugging
information if coerced. As we will see, BIND provides a configuration option for
changing the compiled-in value of DESTRUN on the fly.
Makefile.set comes with LEX set to flex (the GNU version of lex) and
YACC set to byacc (Berkeley yacc). Reset these to the default OS version.

14

Resulting Files

• Files you need
[in.]named -- name server
named-xfer -- does zone transfers for in.named
nslookup -- make DNS queries
nslookup.help -- help text for nslookup

• Other useful programs
host -- simplified nslookup

dig -- nslookup on steroids

The BIND release builds a binary, named, which is the actual name server daemon.
Solaris refers to this program as in.named. named periodically calls named-
xfer when it needs to do a wholesale transfer of domain information from another
nameserver, e.g. when your name server is acting as a secondary for another
domain.
nslookup is a tool for actually making DNS queries of a local or remote name
server. Make sure you install the version of nslookup from the release of BIND
you are installing and to throw away the Sun version, or vast confusion will result.
The dig and host programs are alternate means of making DNS queries. In
particular, dig gives back a great deal of useful debugging information once you
learn how to read the output.

15

BIND -- Installing Files
% /bin/su

Password:

make install

(lots of output)
cd /usr/sbin

cp /usr/local/pkg/bind/8.2.x/sbin/named \

in.named_from_usr-local-pkg

rm in.named

ln -s in.named_from_usr-local-pkg in.named

rm named-xfer

ln -s /usr/local/pkg/bind/8.2.x/sbin/named-xfer .

rm nslookup

ln -s /usr/local/pkg/bind/8.2.x/sbin/nslookup .

Note that we are removing the Solaris binaries.
We want to install the new in.named locally so that it's available at boot time
before NFS gets a chance to start up. We go through the rigmarole with the
in.named_from_usr-local-pkg just to make it clear to other admins that
we're not using the stock Solaris in.named.

16

Which Version of Sendmail?

• Too many versions:
– v8.9.3 is stable, no known security holes
– v8.10 was a major feature release
– v8.11.x is the current version

This course covers Sendmail v8.11

In the past, it was usually the case that administrators always wanted to be running
the latest version of Sendmail– mostly because new versions of Sendmail were
created whenever a security problem was discovered. At this time, however,
Sendmail v8.9.3 has been in use for a long time and we still don't know of any
security problems in this version of the code. v8.9.3 is a known stable release that
is still in use on a lot of systems.
Sendmail v8.10 was the largest feature release in Sendmail history– made possible
by the work of the engineering team at Sendmail.COM. While many of these new
features are useful, new features/code implies that new bugs may have been added
as well. Sendmail v8.10 was followed by v8.11 (v8.11 includes crypto support and
support for SMTP AUTH)– the latest version as of this writing is v8.11.3.
If you don't need all of the features that were introduced in Sendmail v8.10 and
v8.11, then perhaps you may be more comfortable staying with v8.9.3. This course
uses Sendmail v8.11.3 for its examples because we want to make use of the new
anti-spam features in the latest version. For more information on new features
introduced in Sendmail v8.10, check out:

http://www.sendmail.net/allabout810.shtml

17

Sendmail -- Build Process

• Get Sendmail v8.11.? (latest version)
ftp.sendmail.org

/pub/sendmail/sendmail.8.11.x.tar.gz

• Unpack and build
% zcat sendmail.8.11.x.tar.gz | tar xf -

% cd sendmail-8.11.x
% sh Build (lots of output)

Frankly, the build process for recent versions of Sendmail is trivial. The compiled
binary ends up in a directory called obj.<system type>, where <system
type> is a string like "OpenBSD.2.8.i386".
A couple of notes if you're building Sendmail v8.9.3 from source:
• The source code and Build script are located in a sub-directory called
sendmail-8.9.3/src, rather than the top-level directory
• You may want to edit the OS configuration file for your system in the
sendmail-8.9.3/BuildTools/OS directory. In particular, you may want to
add the -DUSE_VENDOR_CF_PATH switch to the confENVDEF declaration in
the appropriate file. This forces Sendmail to look for its configuration file in the
directory that your OS vendor chooses, rather than the Sendmail default
(/etc/sendmail.cf). This may make administration easier for you.
Note that starting with Sendmail v8.10, the convention is to put all Sendmail-related
configuration files in the directory /etc/mail, so the USE_VENDOR_CF_PATH
switch isn't used anymore.

18

Sendmail -- Installing Files
% /bin/su

Password:

cp obj.SunOS.5.8.sun4/sendmail \

/usr/lib/sendmail

chmod 4555 /usr/lib/sendmail

chown root:bin /usr/lib/sendmail

chmod g-w /etc /etc/mail

Again, we are disposing of the binary provided with Solaris. You will have to
replace the sendmail.cf file that your vendor provides-- we'll be talking about
how to do this in later sections.
Note that, starting with Sendmail v8.9, Sendmail will refuse to start if either the
/etc or /etc/mail directories are group writable. On Solaris machines and
some others, these directories are normally group writable, but turning off this
attribute doesn't appear to impact the system.
Actually, what's happening is that recent versions of Sendmail institute a number of
checks on the OS environment and will refuse to execute if they detect problems.
Generally, you should follow the advice that Sendmail gives you in this respect.
However, if you get to a point where Sendmail is refusing to operate unless you
make a change that breaks your operating system, you can always set the
DontBlameSendmail flag in the Sendmail configuration file to turn off these
checks (at the cost of running Sendmail in a potentially insecure environment).

19

Top Level Setup

• Basic DNS Configuration
• Running and Testing DNS
• Basic Sendmail Configuration

In this section we're going to cover basic DNS configuration and installation. This
includes an introduction to the named.conf file-- the primary configuration file
for the BIND v8 in.named-- as well as our first glimpse at DNS zone database
files. Later sections will revisit these files and demonstrate additional functionality.
Once we've got DNS set up to our satisfaction, we'll take our first look at creating
Sendmail configurations.

20

Name Server Config - named.conf

options {

directory "/etc/namedb";

};

zone "sysiphus.com" {

type master;

file "sysiphus.hosts";

};

This is slide 1 of 2.
In this portion of the named.conf file, we set the directory option to
/etc/namedb. This changes the default working directory of the named process
(DESTRUN from Makefile.set), meaning that this is where named will now
dump core file as well as debugging info and that this is where named will look for
its zone files. Effectively, this means that all file names given in other sections of
this named.conf file will be relative to /etc/namedb.
Next we define the sysiphus.com zone. We are the master server for the
domain, which means the DNS information for this domain is maintained on this
machine. The DNS information for this domain is kept in the file
sysiphus.hosts (which lives in /etc/namedb, see above). The contents of
the sysiphus.hosts file will appear later in this section.
Note that the older versions of BIND used "primary" instead of "master". You
may here people refer to being the "primary nameserver" for a domain. No need to
be confused , they just mean "master namesever".

21

named.conf (cont.)

zone "16.172.in-addr.arpa" {

type master;

file "sysiphus.rev";

};

zone "." {

type hint;

file "named.ca";

};

This is slide 2 of 2.
The next zone name looks odd. in-addr.arpa is a very old hack which was
created to allow DNS clients to look up IP addresses and get back hostnames. Drop
the in-addr.arpa part and reverse the two numbers: this declaration is for the
network 172.16.0.0. By configuring ourselves as the master for this domain,
we're claiming that this server knows the hostnames for addresses that are
somewhere within this netblock. The address to hostname mappings are kept in a
different file from the hostname to address mappings for sysiphus.com hosts.
Zone "." is a special zone, generally referred to as the "root" of the DNS system.
Servers at the root are responsible for providing information about which servers
serve which zones. For example, when your local name server wants to look up
www.cisco.com, it first has to contact a root server to find out what machine to
talk to in order to get information for the cisco.com domain. Your name server
then talks to the name server for cisco.com to get the address of
www.cisco.com.
The named.ca file contains names and addresses of all the currently running root
name servers. This file is maintained by the InterNIC (Internet Network
Information Center) and is available at:

ftp://ftp.rs.internic.net/domain/named.ca

22

sysiphus.hosts

@ IN SOA mailgate.sysiphus.com. hostmaster.sysiphus.com. (
1998042200 ; Serial - year/month/date/revision

86400 ; Refresh from server - daily
300 ; Retry after failure - 5 minutes

604800 ; Expire data - 7 days
86400) ; Time to live - 1 day

@ IN NS mailgate.sysiphus.com.

IN NS ns.lamb.net.
IN NS ns2.alameda.net.

IN MX 10 mailgate.sysiphus.com.

mailgate IN A 172.16.1.10

(slide 1 of 4)
Every zone database file begins with an SOA (Start of Authority) record. The first hostname listed is the
name of the master name server for the domain. The second hostname isn't a hostname at all– it's an email
address, hostmaster@sysiphus.com, for the local domain administrator. The @ character is a
special symbol which gets expanded to mean "the current domain" (sysiphus.com in this case). We
can see @ markers in a couple of locations in this file.
The first number in the SOA record is the serial number for the zone. You can use any numbering scheme
you want just so long as every time you make a change you increase the value of the serial number in the
SOA record. If you don't increase the serial number value then your changes won't get propagated.
Forgetting to update the serial number after zone changes is an extremely common error.
The next two values say how often slave servers should poll the master for new information and how
frequently they should retry if they fail to get connected. If the slave server cannot contact the master
within the given expire time (the fourth value in the SOA record) it will invalidate its own information and
stop answering queries for the given zone-- basically the slave decides that at some point its data is so old
that it must be invalid. Setting up slave servers (covered in later sections) is important for disaster
recovery.
Note that starting with BIND v8.1.2, updates on the master server result in the known slave servers
receiving a special "notify" message which tells them that the zone data on the primary has been changed.
As long as the slave server is running a recent version of BIND (servers older than v8.1.2 receive the
notify packets but don't understand or do anything with them), the slave immediately contacts the master
server and download the new zone information. This means that the middle three values of the SOA
record are becoming much less important. in modern releases of BIND.

23

sysiphus.hosts (addtl notes)
@ IN SOA mailgate.sysiphus.com. hostmaster.sysiphus.com. (

1998042200 ; Serial - year/month/date/revision

86400 ; Refresh from server - daily
300 ; Retry after failure - 5 minutes

604800 ; Expire data - 7 days
86400) ; Time to live - 1 day

@ IN NS mailgate.sysiphus.com.

IN NS ns.lamb.net.
IN NS ns2.alameda.net.

IN MX 10 mailgate.sysiphus.com.

mailgate IN A 172.16.1.10

(slide 2 of 4)
The last value in the SOA record is the time-to-live (TTL) value for data from this
zone. It specifies how long data in the sysiphus.com zone to live in the caches
of other name servers. Caching reduces the load on remote nameservers: if 500
people in your company all go to www.playboy.com, your server only has to do
one lookup, and Playboy's name servers have to answer 499 less queries.
In general the settings for your server refresh period and TTL are dependent on how
dynamic your DNS data is. If you're making lots of changes then you want your
slave servers to synch up frequently (hourly perhaps) and you want TTL values to
be low. On the other hand, if your DNS data is more static you can significantly
reduce server load by tuning these values back. You may want to make the
intervals smaller when you're doing a major network upgrade or renumbering and
then back off to longer intervals when your network "returns to normal".

24

sysiphus.hosts (addtl notes)
@ IN SOA mailgate.sysiphus.com. hostmaster.sysiphus.com. (

1998042200 ; Serial - year/month/date/revision

86400 ; Refresh from server - daily
300 ; Retry after failure - 5 minutes

604800 ; Expire data - 7 days
86400) ; Time to live - 1 day

@ IN NS mailgate.sysiphus.com.

IN NS ns.lamb.net.
IN NS ns2.alameda.net.

IN MX 10 mailgate.sysiphus.com.

mailgate IN A 172.16.1.10

(slide 3 of 4)
The next three entries in the file are NS (Name Server) records. They list the
known name servers for the domain. It's a good idea to have secondary name
servers for your domain that are somewhere other than on your network (in case
your Internet link goes down). Most ISPs will be slave servers for their customers
at no additional charge. Please do not list ns.lamb.net and
ns2.alameda.net in your zone files! They're my ISP, not yours!
The next record is an MX (Mail eXchanger) record. This one says "direct all mail
for user@sysiphus.com addresses to mailgate.sysiphus.com. The
numeric value "10" is a preference value-- the lower the number, the more preferred
a given server is. If we had MX records at priority 10 and priority 100, all mail
would go to the priority 10 server unless it was unreachable. When all lower
numbered servers were unreachable, the mail would go to the priority 100 server.
You can have multiple servers at the same priority, in which case the name server
hands out the names of the mail server in order until the list is exhausted and then
starts over again with the first server.
The last record in the file is an A (Address) record. It says the address of
"mailhub(.sysiphus.com)" is 172.16.1.10.

25

sysiphus.hosts (addtl notes)
@ IN SOA mailgate.sysiphus.com. hostmaster.sysiphus.com. (

1998042200 ; Serial - year/month/date/revision

86400 ; Refresh from server - daily
300 ; Retry after failure - 5 minutes

604800 ; Expire data - 7 days
86400) ; Time to live - 1 day

@ IN NS mailgate.sysiphus.com.

IN NS ns.lamb.net.
IN NS ns2.alameda.net.

IN MX 10 mailgate.sysiphus.com.

mailgate IN A 172.16.1.10

(slide 4 of 4)
You've probably noticed at this point that two of the three NS records as well as the
MX record have nothing in the first column. If no name is specified before the IN,
then the value from the previous line is used. We actually could have dropped the @
in front of the first NS record, since we specified @ in front of the SOA record.
The next important piece of syntax to note is all of the trailing "." at the end of each
entry. If there is no trailing ".", then the local domain name is appended.
mailgate.sysiphus.com would become
mailgate.sysiphus.com.sysiphus.com and ns.lamb.net would
become ns.lamb.net.sysiphus.com, both of which are nonsensical.
In many cases, this automatic appending of domain names is useful. For example in
the single A record in this domain: mailgate becomes
mailgate.sysiphus.com. There is a very clever reason why we're doing
unqualified names in the first column and fully-qualified names with dots in the
last column, but you'll have to wait until we get to the Virtual Domains section to
find out what that is.

26

sysiphus.rev

@ IN SOA mailgate.sysiphus.com. hostmaster.sysiphus.com. (

1998042200 ; Serial - year/month/date/revision

86400 ; Refresh from server - 60 minutes

300 ; Retry after failure - 5 minutes

604800 ; Expire data - 7 days

86400) ; Time to live - 1 day

@ IN NS mailgate.sysiphus.com.

IN NS ns.lamb.net.

IN NS ns2.alameda.net.

10.1 IN PTR mailgate.sysiphus.com.

Recall that the sysiphus.rev file holds the IP address to hostname mappings. It
too has an SOA record and group of NS records, just like the sysiphus.hosts
file has. Generally, it's a good idea to have the same set of servers be name servers
for both the forward (hostname to IP address) and reverse (IP address to hostname)
zones for a given organization, if for no other reason than it reduces confusion on
the part of local administrators.
The PTR (Pointer-- a bad name, IMHO) record is the logical inverse of the A record
from the forward zone file. Recall that we read the domain name for the
16.172.in-addr.arpa zone "backwards"? Well, you read PTR records
backwards too: the address of mailgate.sysiphus.com is 172.16.1.10.
Again, note the trailing "." on mailgate.sysiphus.com!

27

Starting Your Name Server

• Your boot script probably has
WRONG! We don’t have a named.boot file.
#

if [-f /usr/sbin/in.named -a -f /etc/named.boot]; then
/usr/sbin/in.named;

fi

• You want instead
CORRECT. Now using named.conf

#
if [-f /usr/sbin/in.named -a -f /etc/named.conf]; then

/usr/sbin/in.named;
fi

Congratulations! You've now completed the basic DNS configuration steps! There
are, unfortunately, a few things left to do.
Older versions of BIND (that's v4 and earlier-- there was no BIND v5-7) use a
different config file called named.boot. Chances are your boot script looks for
named.boot before starting the name server. You need to tweak this script to
look for /etc/named.conf instead. You can execute
/usr/sbin/in.named as root to get the name server started without rebooting.
Btw, named.boot has a completely different syntax from named.conf. If you
have old named.boot files lying around, there's a script called
named.bootconf.pl in the BIND v8 distribution which converts
named.boot files to named.conf files.
Also, btw, the format of the zone database files did not change, so you can keep
using any old files you have lying around.

28

Configuring Your Resolver

• Create /etc/resolv.conf

domain sysiphus.com

nameserver 172.16.1.10

• Tweak /etc/nsswitch.conf

hosts: files dns

Great, DNS is configured and the name server is even going to start up at boot time.
Now you have to teach your machine to look up hostnames using DNS.
What's going on here is that there are really two pieces to this DNS equation.
We've already seen the basics of configuring a name server. The other piece is
what's generally referred to as a "resolver" or DNS client. The nslookup, host,
and dig programs are all resolvers. More interestingly, there are a bunch of library
routines buried in your system (in the Unix universe, the outermost expression of
these routines are the gethostbyname() and gethostbyaddr() functions)
which programs incorporate to do hostname lookups. Depending on the
configuration of your machine's resolver, hostname lookups can happen in a flat file
(like /etc/hosts), via DNS, or via something like NIS[+] or Hesiod, or even by
some combination of these.
To configure the resolver on a Unix machine, create a file called
/etc/resolv.conf. The domain directive lists the machine's local domain
and then you may have one or more nameserver lines which give the IP address
(can't use hostnames because we wouldn't know how to look them up!) of name
servers for the given domain.
Some Unix systems also require you to tweak an OS configuration file (like
/etc/nsswitch.conf on Solaris systems) to tell the OS you're going to be
using DNS. Consult your vendor documentation.

29

Testing Your Name Server
mailgate% host mailgate.sysiphus.com

mailgate.sysiphus.com has address 172.16.1.10

mailgate% host sysiphus.com

sysiphus.com mail is handled (pri=10) by mailgate.sysiphus.com

mailgate% host 172.16.1.10

10.1.16.172.IN-ADDR.ARPA domain name pointer
mailgate.sysiphus.com

mailgate% host www.cisco.com

www.cisco.com is a nickname for cio-sys.cisco.com

cio-sys.cisco.com has address 192.31.7.130

cio-sys.cisco.com mail is handled (pri=10) by cio-sys.cisco.com

Allrighty, everything should be ready to go from a DNS perspective. Let's use the
host command to verify a few things.
In the first case, we simply verify that we can do a simple hostname to address
lookup. This also verifies that your nameserver is running and your resolver
configured properly.
In the next example we look up the records for the sysiphus.com. By default,
the host command doesn't print out SOA or NS records, but we do see the priority
10 MX record pointing at mailgate.sysiphus.com.
The third example tests the in-addr.arpa domain configuration.
Finally we make sure we can resolve external names. This verifies that we can get
out to the Internet and that our named.ca file is in good shape.

30

Creating Sendmail Config Files
% cd /path/to/sendmail/src

% cd cf

% mkdir sysiphus-configs

% cd sysiphus-configs

% vi toplevel.mc (see next slide)
% m4 toplevel.mc > toplevel.cf

% /bin/su

Password:

cp toplevel.cf /etc/mail/sendmail.cf

echo sysiphus.com >/etc/mail/local-host-names

echo mailgate.sysiphus.com >>/etc/mail/local-host-names

/etc/init.d/sendmail stop

/etc/init.d/sendmail start

In the bad old days, when monsters and giants roamed the earth, lowly mail
administrators had to learn an arcane language to configure Sendmail. You can still
see this language if you happen to look at your local sendmail.cf file. The
good news is that v8 Sendmail comes with an exceedingly handy mechanism for
generating sendmail.cf files from a more human-readable configuration
language.
Yes, some day you should learn how to hack sendmail.cf files directly, but for
9 out of 10 jobs, you don't even have to look at them. We're not going to look at a
Sendmail ruleset for this entire course-- take Eric Allman or Rob Kolstad's course if
you want to be done to death by sendmail.cf files.
Inside the Sendmail source directory is a subdirectory cf which contains a
number of directories and files containing m4 macros. m4 is another artifact of the
ancient days of Unix-- think of it as a less functional version of the C pre-processor
(if you know what that is). It turns out you probably use m4 nearly every day and
don't know it: the syslog.conf file is in the m4 macro language and you'll see
some similarities with our m4 files which generate sendmail.cfs.
Your best bet is to create one or more subdirectories of your own in Sendmail's cf
hierarchy. Put your configuration files there and give them descriptive names.
Chances are you'll go back to them from time to time to tweak your mail
configurations.
More on the /etc/mail/local-host-names nonsense in the next couple of
slides.

31

toplevel.mc
include(`../m4/cf.m4')

OSTYPE(`solaris2')

define(`confMAX_HOP',`25')

define(`confSMTP_LOGIN_MSG', `$j mailer ready at $b')

define(`confMIME_FORMAT_ERRORS',`False')

FEATURE(promiscuous_relay)

FEATURE(accept_unqualified_senders)

FEATURE(use_cw_file)

MASQUERADE_AS(sysiphus.com)

MAILER(smtp)

(slide 1 of 3)
The first line of the file pulls in the standard set of m4 macros used to generate
sendmail.cf files. On the second line we define our sendmail.cf file as
running on a Solaris system (this sets OS specific values like directory names).
Sendmail attempts to stop messages from looping forever. Normally a message is
rejected if it's taken 18 or more hops (a hop is generally being passed from one
machine to another). We can set this value higher by setting the MAX_HOP variable
as shown.
When you telnet to port 25 on a machine running Sendmail, you see something like:

220 mailgate.sysiphus.com ESMTP Sendmail \
8.8.5/8.8.5; …

which you will note gives the version of Sendmail. Since there are known bugs
with many older versions of Sendmail and surely more to be discovered in the
current version, going around advertising your version of Sendmail is a bad idea.
The new SMTP_LOGIN_MSG we set looks like

220 mailgate.sysiphus.com ESMTP mailer \
ready at <date>

which doesn't even advertise that we're running Sendmail.

32

toplevel.mc (addtl notes)
include(`../m4/cf.m4')

OSTYPE(`solaris2')

define(`confMAX_HOP',`25')

define(`confSMTP_LOGIN_MSG', `$j mailer ready at $b')

define(`confMIME_FORMAT_ERRORS',`False')

FEATURE(promiscuous_relay)

FEATURE(accept_unqualified_senders)

FEATURE(use_cw_file)

MASQUERADE_AS(sysiphus.com)

MAILER(smtp)

(slide 2 of 3)
Sendmail v8 by default formats error messages (bounces, etc.) as MIME multipart
documents. Set MIME_FORMAT_ERRORS to False if your site doesn't widely
use MIME compliant mail readers.
The growth of spam on the Internet has made it necessary for Sendmail to change
many of its previous behaviors with the latest v8.9. Relaying, spam, and related
issues will be discussed more completely in the section DNS and Sendmail vs.
Firewalls, but for now we will disable the new Sendmail v8.9 behaviors with
FEATURE(promiscuous_relay)-- your mail server will accept messages
from any sender to any recipient (including messages from outside your company to
recipients outside your company)-- and
FEATURE(accept_unqualified_senders)-- Sendmail will accept
messages from addresses that do not include a domain name.

33

toplevel.mc (addtl notes)
include(`../m4/cf.m4')

OSTYPE(`solaris2')

define(`confMAX_HOP',`25')

define(`confSMTP_LOGIN_MSG', `$j mailer ready at $b')

define(`confMIME_FORMAT_ERRORS',`False')

FEATURE(promiscuous_relay)

FEATURE(accept_unqualified_senders)

FEATURE(use_cw_file)

MASQUERADE_AS(sysiphus.com)

MAILER(smtp)

(slide 3 of 3)
The use_cw_file feature causes Sendmail to look for a file called /etc/mail/local-
host-names (Prior to Sendmail v8.10, the file was called sendmail.cw which is why the
feature has the name it does). This file contains a list of all domains that should be considered
"local" to this machine. Without this feature you have to modify your Sendmail configuration
every time you inherit a new domain, which turns out to be a pain. With use_cw_file you
just update the local-host-names file and restart Sendmail.
The MASQUERADE_AS directive says that all mail sent from this machine should have return
addresses like user@sysiphus.com. Without this directive, the addresses would look like
user@mailgate.sysiphus.com.
Which brings us to the question, what names should go in the local-host-names file?
Since we're masquerading as sysiphus.com, we should definitely put that in. We should
never emit mail that appears to come from user@mailgate.sysiphus.com, but it
wouldn't hurt us to put that name in local-host-names. Always try to follow the "be strict
in what you send out, liberal in what you accept" rule.
MAILER(smtp) means that this machine will be doing standard SMTP (Simple Mail Transfer
Protocol-- the standard protocol for moving mail around the Internet) mail. There are other
mailers, such as UUCP, to support various archaic systems. We won't use any mailers but SMTP
in this tutorial. The general rule of thumb is that MAILER declarations should always go last in
your m4 files.

34

The corp Subdomain

• Delegating Your First Domain
• Configuring the corp Domain
• POP/IMAP

Congratulations! You just suffered through the basics of configuring DNS and
Sendmail and emerged relatively unscathed.
In this section we'll complicate our initial example by creating a new subdomain
called corp.sysiphus.com and then delegating that domain to another server.
Delegating a domain means handing it off to another (administrative) group to
manage on their own. This is how DNS scales for large companies.
We'll also digress a bit in this section to talk about POP (Post Office Protocol) mail
and IMAP-- good systems for allowing PC users to read mail from a Unix server.

35

What is Delegation?

• Hands off a subdomain to be
managed on a different name server

• Allows different organizations to
have local control over own domain

• Makes your network architecture
more fault-tolerant

• Allows you to use smaller hardware
for name servers

As we just mentioned, delegation is a mechanism for handing off control of part of
your domain to a different machine and a different group of administrators. By
having their own local domain with their own servers, DNS administration can be
more efficient and the organization won't need to suffer as badly if there is a
problem on the top level name server or the name server belonging to some other
organization. More than anything, delegation eliminates some political arguments
(although it can cause others).
Another nice aspect of subdomains and delegation is that you can have the same
hostname in different domains, e.g. mailhub.eng.sysiphus.com and
mailhub.corp.sysiphus.com. This makes delegation a particularly useful
technique for integrating companies you might acquire-- just give the new company
its own subdomain and you don't have to worry about telling them they have to
change all their important machine names.

36

How to Delegate?

• By department or geography?
– Depends on how administration is handled
– Can do both simultaneously

• Be consistent
• Avoid using top-level domain names

as subdomain names

One political argument that delegating subdomains causes is how the subdomains
should be named. You can go for functional names (eng.sysiphus.com and
corp.sysiphus.com) or geographical names (boston.sysiphus.com,
washington.sysiphus.com, etc.) or both (sfo.eng.sysiphus.com).
The right answer to this question is "name them based on how your administrative
staff is organized". Remember that the primary function of delegation is to spread
the administrative load appropriately. Chances are, your administration is primarily
arranged on a functional level and then perhaps on a geographical basis.
Whatever you do, be consistent! Part of the goal here is to make your domain
names memorable by humans so they can connect to your servers and address email
properly. Don't have a boston.sysiphus.com and an eng.sysiphus.com
and a corp.washington.sysiphus.com!
Also, avoid using com, edu, net, org, mil, int, gov, arpa, etc. as subdomain
names. Until you understand more about how DNS servers do lookups (which we
won't discuss in this course), you'll just have to take my word for this one.

37

Step 1: Update sysiphus.hosts
@ IN SOA mailgate.sysiphus.com. hostmaster.sysiphus.com. (

1998042201 ; Serial - year/month/date/revision
86400 ; Refresh from server - daily

300 ; Retry after failure - 5 minutes
604800 ; Expire data - 7 days

86400) ; Time to live - 1 day

@ IN NS mailgate.sysiphus.com.

IN NS ns.lamb.net.
IN NS ns2.alameda.net.

IN MX 10 mailgate.sysiphus.com.
mailgate IN A 172.16.1.10

corp IN NS mailhub.corp.sysiphus.com.

IN NS mailgate.sysiphus.com.

mailhub.corp IN A 172.16.16.10

The first step in delegating a domain is adding NS records for the subdomain in the
higher level zone database (note that we remembered to update the serial number
after we made this change!). In this case we're saying that
mailhub.corp.sysiphus.com and mailgate.sysiphus.com will be
name servers for corp.sysiphus.com. We're going to make mailhub the
master server and mailgate a slave server (more on this shortly, promise!) but
the actual order of the NS records doesn't imply anything.
Then we have to add an A record for mailhub.corp(.sysiphus.com--
remember the current domain name is appended if there's no trailing "."). It's not
always the case that the upper level name server is a slave server for the subdomain,
and the top level machine might have no way of knowing what the IP address is of
the machine it just delegated the domain to. When an outside server asks the upper
level server who owns the corp.sysiphus.com domain, it wouldn't be able to
give a complete answer without the IP address and the delegation would break
down. Always add the extra A record! These A records are generally referred to as
glue records.
Btw, if you look at the named.ca file, it's entirely made up of glue records. The
file is nothing but a listing of NS records for the root zone and corresponding IP
addresses.

38

Step 2: Update sysiphus.rev
@ IN SOA mailgate.sysiphus.com. hostmaster.sysiphus.com. (

1998042201 ; Serial - year/month/date/revision

86400 ; Refresh from server - daily
300 ; Retry after failure - 5 minutes

604800 ; Expire data - 7 days
86400) ; Time to live - 1 day

@ IN NS mailgate.sysiphus.com.

IN NS ns.lamb.net.
IN NS ns2.alameda.net.

16 IN NS mailhub.corp.sysiphus.com.

IN NS mailgate.sysiphus.com.

10.1 IN PTR mailgate.sysiphus.com.

We're also going to delegate a portion of our network space to this new domain. In
this case, we're giving them the 172.16.16.0 network. Giving out chunks of
address space is tricky-- you want to have enough room to grow, but not waste
space that you're never going to use. It's also best to hand out address space based
on multiples of powers of 2-- it's a big win when you start summarizing network
routing information (if you don't know what this means, don't sweat it).
Note that there's no glue record in this file. This is an in-addr.arpa zone so A
records don't belong here. We only need the one in the forward zone file.
Otherwise the update is similar to the one in the previous slide-- including updating
the serial number!

39

Step 3: Create mailhub named.conf

options {

directory "/etc/namedb";

};

zone "corp.sysiphus.com" {

type master;

file "corp.hosts";

};

(continued on next slide)
Next we need to start configuring BIND on mailhub.corp.sysiphus.com
by creating a named.conf file. Once again, we're putting all of our zone files in
/etc/namedb. This machine is going to be the master server for
corp.sysiphus.com.

40

Step 3 (continued)
zone "16.16.172.in-addr.arpa" {

type master;

file "corp.rev";

};

zone "." {

type hint;

file "named.ca";

};

We're also the master server for the 172.16.16.0 network reverse domain. And
of course we need a named.ca file.
Note that this file is substantially the same as the named.conf file on
mailgate.sysiphus.com. This stuff isn't rocket science-- the same principals
apply to configurations throughout your enterprise. Life's going to get more
complicated quickly, though.

41

Step 4: Create corp.hosts
@ IN SOA mailhub.corp.sysiphus.com. hostmaster.corp.sysiphus.com. (

1998042200 ; Serial - year/month/date/revision

86400 ; Refresh from server - daily

300 ; Retry after failure - 5 minutes

604800 ; Expire data - 7 days

86400) ; Time to live - 1 day

@ IN NS mailhub.corp.sysiphus.com.

IN NS mailgate.sysiphus.com.

IN MX 10 mailhub.corp.sysiphus.com.

mailhub IN A 172.16.16.10

Again this file is nearly the same as the corresponding file on
mailgate.sysiphus.com. We've changed the primary name server and email
information in the SOA record, modified the NS and MX records appropriately, and
put in the A record for mailhub.corp.sysiphus.com.
Why don't we need glue in this file so we can find mailgate.sysiphus.com?
We can always do a normal DNS lookup to find the address of this machine: ask a
root nameserver who's the DNS server for sysiphus.com and then do the lookup
there. mailgate couldn't do the same for us because it's "above" us in the DNS
hierarchy-- it has nobody to ask because it's the one who's supposed to know
already!

42

Step 5: Create corp.rev
@ IN SOA mailhub.corp.sysiphus.com. hostmaster.corp.sysiphus.com. (

1998042200 ; Serial - year/month/date/revision

86400 ; Refresh from server - daily

300 ; Retry after failure - 5 minutes

604800 ; Expire data - 7 days

86400) ; Time to live - 1 day

@ IN NS mailhub.corp.sysiphus.com.

IN NS mailgate.sysiphus.com.

10 IN PTR mailhub.corp.sysiphus.com.

Again this file is nearly the same as the corresponding file on mailgate. Note
that there's only one octet listed in the PTR record for this zone because we're
configuring 16.16.172.in-addr.arpa, or network 172.16.16.0 (in
network speak, this is a "class C" network as opposed to a "class B" network like
172.16.0.0).

43

Step 6: Start corp in.named

• Install named.ca file on mailhub

• Tweak boot script to look for
named.conf

• Invoke /usr/sbin/in.named

• Configure resolver in resolv.conf
and nsswitch.conf

Now we need to get the mailhub.corp name server running. Download the
named.ca file and tweak the boot script to look for named.conf instead of
named.boot. Then invoke /usr/sbin/in.named from the command line.
You will also want to configure the resolver on mailhub.corp. The
resolv.conf file for this machine would be

domain corp.sysiphus.com
nameserver 172.16.16.10
nameserver 172.16.1.10

Note that we list both mailhub.corp and mailgate as name servers for
redundancy.

44

Step 7: Modify mailgate named.conf

zone "corp.sysiphus.com" {

type slave;

file "corp-hosts.zone";

masters { 172.16.16.10; };

};

zone "16.16.172.in-addr.arpa" {

type slave;

file "corp-rev.zone";

masters { 172.16.16.10; };

};

Now we need to go back to mailgate and configure the new slave zones it has
just inherited. The definition for a slave zone is similar to the definition for a
master zone except for the new masters definition. The list after the masters
keyword is the IP address (not hostname!) of the machine the slave should get zone
updates from. Note that "masters" is a misnomer since it is actually permissible to
get zone updates from another slave server (can be good for spreading the load
around).
Note that the zone files are not ASCII files in the same format as the regular master
zone files. Don't go editing slave zone files! Make updates on the master only (and
don't forget to update the serial number!).
That's it for configuring DNS for a zone delegation. It gets automatic once you get
the hang of it.

45

What About Email?

• We still need to generate a proper
Sendmail configuration for mailhub

• PC-based users want to use POP or
IMAP clients to read their email
– Need to build and install a POP/IMAP server
– Need to get some mail clients

We still need to generate a sendmail.cf for mailhub.corp, but don't worry
because it's going to look a lot like the one for mailgate.
The we need to come up with a solution to allow the user community to get their
email from mailhub.corp. In most companies, the corporate folks tend to be
PC users (meaning Macs or Wintel machines). POP (the Post Office Protocol) is an
old an established means for providing email services to PCs, and IMAP is the new
standard which has some nice additional functionality. In general, most IMAP
servers include POP support as well.

46

IMAP Features

• Supports multiple mailboxes
• Supports shared mailboxes
• Selective retrieval of message parts
• Searching, threading
• Open standard
• For more info

http://www.imap.org/

One major benefit to IMAP over POP is that users can maintain multiple separate
mail folders, possibly on different servers. Users can share mailboxes, with a fairly
high granularity of access control.
From protocol perspective, IMAP allows users to only fetch parts of a message (just
the headers, or perhaps the body of a message but not a binary attachment). This
makes IMAP useful over low-bandwidth connections. The IMAP protocol also
supports searching.
IMAP generally assumes a long-running connection with the mail server. This is
different from POP mail where the user connects to fetch their mail and then
disconnects immediately. Expect IMAP servers to need more CPU power and
memory as compared to your existing POP servers.
Links to the currently available IMAP servers/clients and related software can be
found at The IMAP Connection (http://www.imap.org/) which is
maintained at the University of Washington (one of the two popular free IMAP
implementations comes out of the University-- the other is "Cyrus" from Carnegie
Mellon).

47

Other Options: Proprietary

• Expensive to acquire
• Administrator intensive
• Difficult to scale

– Server intensive
– Binary formats consume more bandwidth/disk

• Need extra gateway for SMTP mail

Many sites have one or more communities of users that read email with proprietary
email systems such as Microsoft Exchange or Lotus Notes. While such systems
may have more integrated "groupware" type functionality, they also come with a
host of problems that aren't present in standards-based email systems.
First and foremost, these proprietary systems usually cost a lot of money. Aside
from the basic software cost, many organizations end up spending a lot of money on
consulting help to get the systems installed properly. The systems also tend to
require many more administrators per user as compared to standards-based systems.
Being monolithic, "closed" applications, there really is no good way to scale these
products other than buying bigger servers-- something which rapidly reaches a point
of diminishing marginal returns. Because users are used to shipping Word
documents and other binary formats around as email messages, more network
bandwidth and disk space are consumed.
Also note that when these organizations wish to send email via the Internet, SMTP
functionality is usually an add-on product (and often extremely buggy). Also, these
users will tend to continue to send Word documents as email messages, even though
the recipients (often members of your own company) will be unable to read them,
being Unix text mail users.

48

Sendmail config for mailhub
include(`../m4/cf.m4')

OSTYPE(`solaris2')

define(`confMAX_HOP',`25')

define(`confSMTP_LOGIN_MSG', `$j mailer ready at $b')

define(`confMIME_FORMAT_ERRORS',`False')

FEATURE(promiscuous_relay)

FEATURE(accept_unqualified_senders)

FEATURE(use_cw_file)

MASQUERADE_AS(corp.sysiphus.com)

MAILER(smtp)

This file looks exactly like the m4 file for mailgate except that mailhub.corp
masquerades as corp.sysiphus.com. The local-host-names file on
mailhub.corp should contain corp.sysiphus.com and
mailhub.corp.sysiphus.com. Putting the version with the machine name into the
local-host-names file is particularly important on mailhub.corp because users
can easily mis-configure their POP clients to send out email with the machine name in the
return address.

49

Building UWash IMAP Server

• Get sources
ftp://ftp.cac.washington.edu/imap/imap.tar.Z

• Unpack, build, install
% zcat imap.tar.Z | tar xf -

% cd imap-4.x
% make <tag> (lots of output)
% cp imapd/imapd ipopd/ipop3d /etc/mail

The University of Washington provides a free IMAP server that includes POP
support. Most sites that use Open Source IMAP/POP servers use either the UWash
server or Cyrus from Carnegie Mellon. Cyrus has the distinct disadvantage,
however, that it doesn't keep mailboxes in standard Unix /var/mail format (for
performance reasons). This means that you and your users must only access the
server via POP or IMAP-- not always desirable. The UWash server is also
generally easier to install and get working.
Suck down the source, unpack it, and run the make with an appropriate argument
for your system. There are dozens of three letter OS/compiler tags documented in
the toplevel Makefile (for example, the normal Solaris tag is sol, but Solaris
with GCC is gso… go figure). The make command then creates the appropriate
Makefiles to build the software and then does the build.
After you build the daemons, you probably want to install them on a non-NFS
mounted directory, so you don't end up hanging all your users if your NFS server
goes away. /etc/mail is a fine place for the binaries on Solaris systems.

50

Running Daemons
• Add lines to /etc/services

pop3 110/tcp

imap 143/tcp

• Add lines to /etc/inetd.conf
pop3 stream tcp nowait root /etc/mail/ipop3d ipop3d

imap stream tcp nowait root /etc/mail/imapd imapd

• HUP inetd

The POP/IMAP daemons get run out of inetd so you don't have to have a
separate daemon process running on your system all the time. You can run the
daemons in standalone mode if your performance is really suffering, but most users
probably won't even notice the difference.
Don't forget you need to kill -HUP the inetd process to get the changes to take
effect.

51

Clients!

• Search for IMAP clients

http://www.imap.org/products/database.msql

• POP/IMAP Clients you already have:
– Web browsers (Netscape and MSIE, etc.)
– Outlook and Outlook Express

The University of Washington IMAP.org site has a searchable database which lists
all of the know IMAP clients (and servers and bunches of other stuff). If you're
searching for just the right thing for your site, it's a good starting point.
In general, your users probably already have POP/IMAP clients installed on their
systems. Most users will probably be happy enough using their favorite Web
browser or Outlook to read their email.

52

The Engineering Subdomain

• More Delegation!
• Unix Mail Clients
• Stupid Alias Tricks

In setting up our hypothetical Engineering domain, we're going to do two levels of
delegation. That will be enough delegation examples to last anybody a lifetime.
Then there will be some hints on configuring UNIX workstations as mail clients.
Finally we'll spend some time talking about email aliases, including some hints on
using aliases while hiding DNS subdomains.

53

eng.sysiphus.com

Let's look at that network diagram of the Engineering domain again.
The Engineering domain is made up of three geographically distant sites-- one in
the San Francisco Bay Area, one in Boston, and one in the area around Dallas,
Texas. As an easy to remember shorthand, we'll named each of these regions by its
closest major airport (SFO, BOS, and DFW).
The trick is that we want all mail for this domain to be addressed as
user@eng.sysiphus.com regardless of whether the user sits in San Francisco,
Boston, or Dallas. This means that somehow we're going to have to maintain a
mapping of users to physical location. More on this to come.

54

Goals

• Divide DNS administration
geographically

• Keep a local authoritative copy of
sysiphus.com zone

• user@eng.sysiphus.com for email
no matter where user actually sits

Each of the SFO, BOS, and DFW sites have their own local admins, so we want to
further subdomain the Engineering domain by geography. Since the Engineering
domain connects to the rest of the company in SFO, we're going to let the SFO
admins manage the top level eng.sysiphus.com domain in addition to their
own geographic domain, sfo.eng.sysiphus.com. Any of the Engineering
sites could be the master for eng.sysiphus.com, we're just picking this one
more or less arbitrarily.
Let's say the network connection between SFO and the rest of the company is
relatively low bandwidth or unstable. The SFO DNS server is going to get set up as
a slave server of the sysiphus.com domain to help make our DNS setup more
fault-tolerant.
And, as mentioned in the previous slide, we need to get the mail delivery worked
out properly.

55

Step 1: Update sysiphus.hosts

@ IN NS mailgate.sysiphus.com.

IN NS ns.lamb.net.

IN NS ns2.alameda.net.

IN NS mailhub.sfo.eng.sysiphus.com

IN MX 10 mailgate.sysiphus.com.

mailgate IN A 172.16.1.10

eng IN NS mailhub.sfo.eng.sysiphus.com.

IN NS mailhub.bos.eng.sysiphus.com.

IN NS mailhub.dfw.eng.sysiphus.com.

IN NS mailgate.sysiphus.com.

mailhub.sfo.eng IN A 172.16.128.10

mailhub.bos.eng IN A 172.16.160.10

mailhub.dfw.eng IN A 172.16.192.10

Note that this is only part of mailgate's sysiphus.hosts file-- we're not
showing the deleted the SOA record and delegations for the corp domain to make
everything fit on the slide.
Here we delegate the eng domain just as we did the corp domain. All of the
various SFO, BOS, and DFW machines, as well as mailgate will be name serves
for this domain. The SFO server will be the master server.
Then we add glue records for all of the Engineering name servers.

56

Step 2: Update sysiphus.rev
@ IN NS mailgate.sysiphus.com.

IN NS ns.lamb.net.

IN NS ns2.alameda.net.

IN NS mailhub.sfo.eng.sysiphus.com.

128 IN NS mailhub.sfo.eng.sysiphus.com.

IN NS mailgate.sysiphus.com.

160 IN NS mailhub.sfo.eng.sysiphus.com.

IN NS mailhub.bos.eng.sysiphus.com.

IN NS mailgate.sysiphus.com.

192 IN NS mailhub.sfo.eng.sysiphus.com.

IN NS mailhub.dfw.eng.sysiphus.com.

IN NS mailgate.sysiphus.com.

Again this is only part of the sysiphus.rev file with the SOA record and corp
network delegation not shown.
Each site has its own class C network. The nameserver at each site will be the
master server for its own in-addr.arpa domain. In addition, the SFO server is
a slave server for the other two sites' networks. mailgate is also a slave server
for all in-addr.arpa. domains.
Why did we make SFO a slave server for the two other sites' networks but not make
DFW and BOS back each other (and SFO) up? Consider that BOS and DFW have to
talk through SFO to reach one another. Chances are, most problems which will take
out connectivity to the SFO nameserver will also take out connectivity between
BOS and DFW. It won't do any good to have a backup nameserver in a site that's
unreachable.
Note also that we've once again assigned netblocks according to powers of 2. The
SFO network is at 172.16.128.0 (128 is 2^7) and the other netblocks are each
32 (2^5) network numbers away.

57

Step 3: mailhub.sfo named.conf

options { directory "/etc/namedb"; };

zone "." { type hint;

file "named.ca"; };

zone "eng.sysiphus.com" {

type master;

file "eng.hosts";

};

zone "sfo.eng.sysiphus.com" {

type master;

file "sfo-eng.hosts";

};

(continued on next slide)
OK., mailhub.sfo.eng.sysiphus.com (quite a mouthful-- you can see
why most sites don't delegate domains much deeper than a couple of levels) is the
master server for both eng.sysiphus.com and sfo.eng.sysiphus.com.
Once again we're putting all of our zone files in /etc/namedb, including our
very own copy of named.ca.

58

Step 3 (continued)
zone "sysiphus.com" {

type slave;
file "sysiphus.zone";

masters { 172.16.1.10; };
};

zone "bos.eng.sysiphus.com" {

type slave;
file "bos-eng.zone";

masters { 172.16.160.10; };
};

zone "dfw.eng.sysiphus.com" {

type slave;

file "dfw-eng.zone";
masters { 172.16.192.10; };

};

(continued from previous slide -- continues on next slide)
mailhub.sfo is also a slave server for several domains. It gets
sysiphus.com updates from the master DNS server for the domain,
mailgate.sysiphus.com. The DNS updates for the other Engineering zones
come from their respective masters.

59

Step 3 (continued)
zone "128.16.172.in-addr.arpa" {

type master;

file "sfo-eng.rev";
};

zone "160.16.172.in-addr.arpa" {

type slave;
file "bos-eng-rev.zone";

masters { 172.16.160.10; };
};

zone "192.16.172.in-addr.arpa" {

type slave;
file "dfw-eng-rev.zone";

masters { 172.16.192.10; };
};

mailhub.sfo also serves several in-addr.arpa domains. It is the primary
server for its own 172.16.128.0 network, and the slave server for the other two
Engineering sites' networks (zone updates from the servers at those sites).
Note that this is by far the largest named.conf file we've seen to date. There is
theoretically no limit to the number of domains, subdomains, and reverse in-
addr.arpa domains a given machine can serve. Of course, in.named keeps all
of its DNS data in memory, so servers with even just a few large domains can run
out of memory fairly quickly and become unusably slow. Also, many slave servers
for a given domain can cause the master server to become unavailable when the
slave servers all attack at the same time for their zone updates.

60

Step 4: Create eng.hosts
@ IN SOA mailhub.sfo.eng.sysiphus.com. hostmaster.eng.sysiphus.com. (

1998042200 ; Serial - year/month/date/revision

86400 ; Refresh from server - daily
300 ; Retry after failure - 5 minutes

604800 ; Expire data - 7 days
86400) ; Time to live - 1 day

@ IN NS mailhub.sfo.eng.sysiphus.com.

IN NS mailhub.bos.eng.sysiphus.com.
IN NS mailhub.dfw.eng.sysiphus.com.

IN NS mailgate.sysiphus.com.

IN MX 10 mailhub.sfo.eng.sysiphus.com.
IN MX 10 mailhub.bos.eng.sysiphus.com.

IN MX 10 mailhub.dfw.eng.sysiphus.com.

(continued on next slide)
Here's the top of the eng.hosts file on mailhub.sfo. This file contains the
authoritative info for the eng.sysiphus.com domain.
Note that in the SOA record, the primary name server is mailhub.sfo.eng, but
the email contact is hostmaster@eng.sysiphus.com.
All three Engineering site nameservers serve the eng.sysiphus.com zone, as
does mailgate.sysiphus.com. Don't panic, the glue records are on the next
slide.
All three Engineering site servers also accept mail for eng.sysiphus.com at
equal priority level. Often times you list multiple MX servers for redundancy. In
our case, this is mostly here to support our goal of user@eng.sysiphus.com
mail addressing.

61

Step 4 (continued)
sfo IN NS mailhub.sfo.eng.sysiphus.com.

IN NS mailhub.bos.eng.sysiphus.com.

IN NS mailhub.dfw.eng.sysiphus.com.

bos IN NS mailhub.sfo.eng.sysiphus.com.

IN NS mailhub.bos.eng.sysiphus.com.

IN NS mailhub.dfw.eng.sysiphus.com.

dfw IN NS mailhub.sfo.eng.sysiphus.com.

IN NS mailhub.bos.eng.sysiphus.com.

IN NS mailhub.dfw.eng.sysiphus.com.

mailhub.sfo IN A 172.16.128.10

mailhub.bos IN A 172.16.160.10

mailhub.dfw IN A 172.16.192.10

(continued from previous slide)
Next we delegate the SFO, BOS, and DFW zones. Each zone's name server is
primary for that domain and the other two name servers are slaves.
Finally, we have the glue records for the various name servers in the different
Engineering domains.
Creating the sfo-eng.hosts file (which contains DNS info for the
sfo.eng.sysiphus.com domain) is left as an exercise to the reader. Actually, all of
the configuration files for all domains and subdomains of sysiphus.com are
included in the back of this tutorial as Appendices.

62

Step 5: Create sfo-eng.rev
@ IN SOA mailhub.sfo.eng.sysiphus.com. hostmaster.eng.sysiphus.com. (

1998042200 ; Serial - year/month/date/revision

86400 ; Refresh from server - daily

300 ; Retry after failure - 5 minutes

604800 ; Expire data - 7 days

86400) ; Time to live - 1 day

@ IN NS mailhub.sfo.eng.sysiphus.com.

IN NS mailgate.sysiphus.com.

10 IN PTR mailhub.sfo.eng.sysiphus.com.

Here's the in-addr.arpa domain file for the SFO network. Note that by simply
changing all sfos to bos or dfw, this file is equally appropriate for each of the
other Engineering networks.

63

Step 6: Start sfo.eng in.named

• Create sfo-eng.hosts file

• Install named.ca file

• Tweak boot script for named.conf

• Invoke /usr/sbin/in.named

Again, there's a copy of all of the config files for the SFO, BOS, and DFW zones in
the back of this tutorial. You have to download the named.ca file for yourself!
Once you've got the config and zone files installed on the Engineering servers,
modify your boot script to look for named.conf and fire up the name server on
each machine.
When configuring resolv.conf, you want something like

domain sfo.eng.sysiphus.com
nameserver 172.16.128.10
nameserver 172.16.160.10
nameserver 172.16.192.10

Change the domain specifier as appropriate for each machine, and list the local
name server first in the list of name servers so that machine gets tried first.

64

Step 7: Modify mailgate named.conf

zone "eng.sysiphus.com" {

type slave;

file "eng-hosts.zone";

masters { 172.16.128.10; };

};

zone "128.16.172.in-addr.arpa" {

type slave;

file "sfo-eng-rev.zone";

masters { 172.16.128.10; };

};

(… similar entries for other in-addr.arpa zones …)

mailgate's named.conf now needs to get slave zone blocks for the
eng.sysiphus.com domain as well as the three in-addr.arpa domains it
delegated away to the Engineering sites. Two of those in-addr.arpa domains
are not shown here due to space issues.

65

Unix Mail Clients

• Engineering sites have lots of Unix
machines on desktops

• Users want to read email on their
desktop machine

• Don't want every machine to be a
mail server

• What to do?

Engineering sites tend to have lots of various types of Unix workstations on people's
desktops. Users tend to want to read mail on their desktop so that they can easily
use GUI-based mail tools (exmh, etc.) or just not have to log into a different
machine to get their mail. Unix mail programs, though, generally require a copy of
the user's mailbox on whatever machine they're being run on. This means we
somehow have to get the user's mailbox to their desktop.
You definitely don't want each of these machines configured to be a mail server-- it
would be an administrative nightmare! In general, most sites configure their Unix
workstations to rely on a central server (or group of servers) to handle mail for the
site. The desktop machines mount the mail spool directory from this central
machine via NFS (this is dangerous as we'll discuss in a moment) or use a separate
program to fetch the mail down to the local machine. Desktop clients have their
Sendmail configured to forward all mail to the central server for processing.

66

Unix Client Sendmail Config

The nullclient config:
include(`../m4/cf.m4')

OSTYPE(`solaris2')

FEATURE(`nullclient', `mailhub')

Don't forget to configure the resolver!

The nullclient FEATURE causes the local Sendmail daemon on each
workstation to do nothing with mail it receives except to forward that mail to the
central mail hub for delivery. We don’t want to deliver mail locally because the
desktop workstations won't have their own mail spool directories.
You must also make sure you have the correct resolv.conf and
nsswitch.conf (or other similar file) settings on each machine. Again, the
resolv.conf file for SFO machines should look like

domain sfo.eng.sysiphus.com
nameserver 172.16.128.10
nameserver 172.16.160.10
nameserver 172.16.192.10

and the files for other domains should be similar (except for the domain name and
name server order).

67

The 99.9% Case

• Machines that do not receive email
don't need to run a Sendmail daemon

• Sendmail daemon also manages the
queue, so an alternative is needed

0 * * * * /usr/lib/sendmail -q

So far, we've really only been talking about the configuration of our company's mail
servers. However, the vast majority of machines in your company are not mail
servers– that is, they do not receive, store, or relay email for any other hosts. Since
these machines do not ever receive email, they do not need to be running a
Sendmail daemon (the primary purpose of which is to listen on port 25/tcp for
incoming email)– this is a big win from a security perspective. Processes which
generate email on the local system always invoke Sendmail directly to send their
email to other machines.
However, that the Sendmail daemon is also responsible for periodically flushing any
queued messages from the mail queues. If you turn off the daemon on most of your
machines, you will need to invoke Sendmail periodically on these hosts to run the
queue– above we see an example of a line from root's crontab file which
accomplishes this mission.
Note that it is also possible to run Sendmail as a daemon which runs the queue
periodically (see the description of the –q flag in the manual page) but doesn't listen
on port 25 (don't use –bd).

68

Getting the Mail to the Client

If you like to live dangerously
mailhub:/var/mail - /var/mail \

nfs - yes hard,actimeo=0

Otherwise check out fetchmail

http://sagan.eathspace.net/~esr/fetchmail/

Many sites use NFS to make a central server's mail spool available to desktop
clients. The problem is that locking a file between two processes across an NFS
link is not a solved problem. As long as you have a completely heterogenous
network and the volume of mail your users get is small, you may not notice any
problems. As volume starts ramping up, however, the probability that users will
start having corrupted mailboxes goes up.
If you are going to use NFS to distribute mailboxes to desktops, make sure you use
the mount options shown above. The hard option causes programs opening files
in the mail directory to get I/O errors if the remote server isn't responding. If you
don't mount /var/mail with the hard option, your mail programs can get
confused and corruption will result. actimeo=0 stops NFS on your machine from
caching file attributes (size, last modification, etc.) at all. This hurts performance,
but again prevents confusion and data loss.
As an alternative to NFS, you should consider using a program like fetchmail.
fetchmail acts like an IMAP (or POP) client to the central server and safely
moves the user's mail down to their desktop machine so their local client can
operate on it. Since the IMAP server that fetchmail interacts with and the
Sendmail server which delivers mail to the user are running on the same machine,
you don't have the NFS locking problem.

69

What About Aliases?

• Aliases only on mail servers

• Two step creation process:
– Edit /etc/mail/aliases
– Run newaliases program

• Aliases can do lots of different things
(see next slide)

Aliases are a mechanism for creating an email address that points to a different user
or group of users, or possibly feeds mail to a program or into a text file. In general,
aliases are only appropriate for machines where mail delivery happens because
aliases are expanded only when the mail is just about to be delivered.
To create an alias, you edit the text file /etc/mail/aliases
(/etc/aliases on some systems) and add aliases at will. Once you've updated
the file, you need to run the newaliases program which creates a hashed
NDBM-style database of your aliases so that Sendmail can look them up faster.
Note that on most systems, newaliases is actually just a symbolic link to the
Sendmail program. When Sendmail is invoked as newaliases, it rebuilds the
alias NDBM files.

70

Let's Talk Aliases

Sample Aliases:
jim: jxh@jxh.com
jxh: jxh@jxh.com

staff: hal,laura,jim,staff-archive

staff-archive: /var/archives/staff

info: |/etc/mail/infobot

customers: :include: /etc/mail/lists/customer-list

In the first example, we're saying that the addresses jim@eng.sysiphus.com
and jxh@eng.sysiphus.com both map to an external email alias
jxh@jxh.com. Any mail going to either of the two eng.sysiphus.com
addresses will not be delivered on any mail server locally, but instead be fired away
to the jxh.com domain.
Next we see an alias for a group of people who get mail for
staff@eng.sysiphus.com. Note that last address in the list which is actually
an alias itself. The staff-archive alias dumps all mail to the staff mailing
list into an archive file so that requests to staff don't get lost. Note that this archive
file will grow without bound, so you need an external process which moves the old
file out of the way periodically and compresses it.
Also note that we use the staff-archive alias in another alias before it gets
defined elsewhere in the file. Remember that the flat aliases file gets converted into
a NDBM file and re-ordered anyway. Sendmail does the right thing handling
multiple levels of aliasing.
The info alias causes all mail sent to info@eng.sysiphus.com to get piped
to a program (perhaps some sort of autoresponder script). We'll talk more about
mail programs later.
The last alias demonstrates how to keep a list of users for an alias in an external file.
This may be a good mechanism to allow unprivileged users to maintain their own
mailing lists, but wait for our section on Majordomo before coming to any
conclusions.

71

eng.sysiphus.com Aliases

• Maintain consistent addresses:
user@eng.sysiphus.com

• However, need to properly handle
users in different locations

• Need to centralize list management

• Try to reduce single points of failure

Now, we've got a problem with aliases and mail delivery in general in the
Engineering domain. Each of the sites wants to believe that it's
eng.sysiphus.com in a mail addressing sense.
The first thing we need to do is to make sure mail gets directed properly to users at
the various sites. In order to do this, we're going to maintain three different files of
aliases. For each site, there's going to be a file which lists all users at that site and
has aliases like:

user: user@site.eng.sysiphus.com

We'll see why this is useful in a moment.
We also want each site to be able to expand certain aliases locally but the same on
all mail hubs in Engineering. For example, there might be an alias for
all@eng.sysiphus.com. We want the mailhub at each site to have the same
notion of who's on this list and how to expand the list locally without routing the
mail to another machine (which could, after all, be down).
Unfortunately, certain types of aliases need to be managed on one machine only. A
prime candidate for this sort of handling is Majordomo-related aliases (wait and see
why). We're going to force mail for all mailing lists managed by Majordomo to go
to the SFO mailhub for processing.
Sound complicated? Well, maybe it is, but the solution is straightforward…

72

sfo-eng.mc File
include(`../m4/cf.m4')
OSTYPE(`solaris2')

define(`confMAX_HOP',`25')

define(`confSMTP_LOGIN_MSG', `$j mailer ready at $b')
define(`confMIME_FORMAT_ERRORS',`False')

FEATURE(promiscuous_relay)
FEATURE(accept_unqualified_senders)

Make sure this is one whole line before m4 gets it!

define(`ALIAS_FILE', `/etc/mail/aliases,/etc/mail/aliases-bos, \
/etc/mail/aliases-dfw,/etc/mail/aliases-majordomo')

FEATURE(use_cw_file)

MASQUERADE_AS(eng.sysiphus.com)
MAILER(smtp)

This looks pretty much like the m4 file for the mailhub.corp machine except for the
MASQUERADE_AS configuration and that nasty ALIAS_FILE thingy.
The trick we're exploiting for our mail routing is the fact that Sendmail can have
arbitrarily many alias files. In fact, you don't even have to use
/etc/mail/aliases at all if you don't want. You can define your own set of
alias file names to your heart's content (some sites do this to put all of their aliases
in some directory other than /etc/mail).
In our case, we're going to keep /etc/mail/aliases as the place where all of
the shared global aliases (like all@eng.sysiphus.com) go. Every mailhub in
Engineering is going to have a copy of the same aliases file (use rdist to ship
them around).
Then we're going to create the three aliases files we talked about in the last slide
which map users to sites:

user: user@site.eng.sysiphus.com

Because the SFO config picks up the BOS and DFW aliases files, whenever the SFO
server gets mail for user@eng.sysiphus.com where user lives in BOS or
DFW, it will expand the alias and re-route the mail to the correct site! SFO doesn't
suck in the SFO aliases file because that would cause mailing loops. Still you can
safely rdist all three site aliases files to all servers because they will be
configured to only pick up the non-local site aliases.
aliases-majordomo contains aliases for all of the Majordomo-related aliases
maintained at SFO.

73

bos-eng.mc File
include(`../m4/cf.m4')
OSTYPE(`solaris2')

define(`confMAX_HOP',`25')

define(`confSMTP_LOGIN_MSG', `$j mailer ready at $b')
define(`confMIME_FORMAT_ERRORS',`False')

FEATURE(promiscuous_relay)
FEATURE(accept_unqualified_senders)

Make sure this is one whole line before m4 gets it!

define(`ALIAS_FILE', `/etc/mail/aliases,/etc/mail/aliases-dfw, \
/etc/mail/aliases-sfo,/etc/mail/aliases-listpointers')

FEATURE(use_cw_file)

MASQUERADE_AS(eng.sysiphus.com)
MAILER(smtp)

The BOS Sendmail config is similar to the SFO config, and nearly identical to the
DFW config which I'm not going to show you.
The BOS Sendmail uses the global aliases file like the other mailhubs, and picks up
the site aliases for the other sites (aliases-sfo and aliases-dfw). BOS,
however, doesn't maintain the Majordomo aliases locally, so it picks up a different
file called aliases-listpointers. For every mailing list list that SFO
manages with Majordomo, the aliases-listpointers has an entry

list: list@sfo.eng.sysiphus.com

Again this aliases file is shipped around to all mail hubs in Engineering (even SFO,
though the SFO Sendmail config never sees it).
A word about local-host-names files is appropriate here. Each mailhub
needs to list both eng.sysiphus.com and eng.site.sysiphus.com as
being local. This is so the redirection to user@site.eng or list@site.eng
will work and the mail will get delivered properly.
You may also wish to add other machine.site.eng.sysiphus.com entries
in local-host-names if you've got machines that aren't properly masquerading
their email addresses (perhaps machines outside of your administrative control).

74

What's in Each Alias File?
/etc/mail/aliases

Engineering-wide lists

/etc/mail/aliases-{sfo,bos,dfw}

Lists of users in each domain, local aliases

/etc/mail/aliases-majordomo

Actual Majordomo-related aliases

/etc/mail/aliases-listpointers

List of Majordomo lists at sfo

Let's recap those alias files again. These files should all be maintained on one
server (though you could manage different files on different machines if you wanted
to make yourself crazy) and rdisted around to the other mailhubs. SFO might be
the best place to manage all of the alias files since the admins there are going to
spend extra time managing the Majordomo-related aliases anyway.
/etc/mail/aliases contains global Engineering-wide aliases which all of the
machines should be able to expand locally. These would be aliases like
all@eng.sysiphus.com which contained a list of all usernames in the
Engineering domain.
/etc/mail/aliases-site contain username to username@site
mappings like

user: user@sfo.eng.sysiphus.com

Note that the all@eng.sysiphus.com might expand to a group of user names,
some of which get expanded to user@site type aliases.
/etc/mail/aliases-majordomo contains all of the aliases related to lists
managed by Majordomo. This file is only read by the SFO Sendmail. The BOS and
DFW Sendmail's read aliases-listpointers. For each mailing list list in
on the SFO server, the listpointers file contains

list: list@sfo.eng.sysiphus.com

75

DNS and Sendmail vs. Firewalls

• DNS/Sendmail Architecture
• Configuring DNS
• Sendmail Routing

So far we've been doing the DNS and mail setup for sysiphus.com and not
worrying very much about security. Unfortunately, there's an awful lot to worry
about. There are lots of network attacks that malicious outsiders can mount against
your mail and DNS servers, and more are being discovered every day.
In this section, we're going to talk about a split-horizon DNS architecture, which
involves effectively cutting your internal network off from the rest of the Internet.
Inside your organization can have a rich, open network environment, but the outside
world sees only the barest amount of DNS information required for your network to
function.
Once we get split-horizon DNS set up, we're going to set up an external mail relay
for pushing mail into and out of our hypothetical company.

76

A Secure Network Architecture

This is the same network diagram we've been looking at for Sysiphus Laborers,
Inc., except that we've added a new network between the Internet and the rest of the
company. Here we're assuming that the routers between the Internet and our new
network, and between that network and the rest of the company are acting as
firewalls.
The function of the bastion host is to provide outside organizations with the
minimal amount of DNS information they need to interact with sysiphus.com.
By hiding information about our internal network, we make it harder for outsiders
to attack us. bastion is also going to be the mail relay into and out of the
company.
The internal DNS configuration is going to remain substantially the same, with
some minor tweaks. Mail within the company will still move around as before, but
mail heading out from the company needs to get relayed through the bastion
host.

77

Assumptions

• Internet hosts cannot connect to
internal machines

• All inward packets stopped on DMZ
• Internal hosts unable to reach

Internet hosts
• mailgate (and other internal hosts)

can reach bastion and vice versa

Throughout our examples in this tutorial, we've been using network 172.16.0.0
for host addresses. This network is part of three network ranges defined in
RFC1918. RFC1918 defines networks that will never be given out to any company
connected to the Internet and will never be allowed to route across the Internet.
These networks are meant to be used internally by companies who cannot get
enough "real" address space for all of their hosts.
In particular, this means that none of the hosts on the inside network of Sysiphus
Laborers can connect directly to the Internet. On the plus side (from a security
standpoint, anyway) this means that it's more difficult for Internet hosts to reach
them. In particular, internal hosts can only talk to bastion and the bastion
host must act as a DNS and mail proxy for all of the internal hosts. Other types of
network connections like Web and FTP connections must also be proxied by some
host on our new external network.

78

DNS -- Goals

• bastion is DNS for external hosts:
– Contains limited zone information
– MX records force mail to bastion

• mailgate is internal name server:
– Contains richer set of information
– Internal domains can be hidden

The bastion host needs an SOA record and appropriate NS records for your
external version of sysiphus.com. It needs A and PTR records for the "public"
servers on our new external network. This would be the bastion host and
probably some other hosts to be your Web and FTP servers. Finally, we need to set
up MX records to that all mail from the outside world that's sent to users under
sysiphus.com gets sent to the bastion host first.
The internal DNS servers will keep the same information we've already configured
into them. As we're going to see in a moment, the external DNS database on the
bastion host doesn't even need configuration information for all of the
subdomains we've set up internally. We can hide them completely from the outside
world.

79

Mail Routing -- Goals

• Inbound mail:
– Goes to bastion first
– Is immediately forwarded to mailgate
– No local delivery on bastion

• Outbound mail:
– Relayed from internal hosts to bastion
– bastion delivers to remote domain

The external mail gateway will be used as a mail proxy for both inbound and
outbound mail. Mail coming in from outside our organization has to stop on the
bastion host and then be forwarded into our internal network. No local delivery
will ever take place on the bastion host itself, thwarting many popular Sendmail-
based attacks.
Since we are assuming that no internal hosts can directly reach hosts on the Internet,
all outbound mail has to find its way to our bastion host, which in turn will
deliver the mail to its final destination.
Given Sendmail's history of security problems, you may feel the risk of running
Sendmail on your external mail server is too great. Previous versions of this course
have recommended using SMAP from TIS as a replacement for the Sendmail
daemon, but the SMAP code is somewhat buggy and no longer actively supported
by TIS. You may wish to investigate QMail or Postfix as more secure options for
Sendmail. On the other hand, the Sendmail sources have probably received much
more scrutiny than the QMail or Postfix sources, and perhaps may actually be more
secure than the newer alternatives.

80

DNS -- Gotchas

• mailgate cannot reach external
name servers-- must rely on bastion

• bastion must resolve local domain
from mailgate to handle mail

This is a very restrictive environment to work in (there's always a security vs. ease-
of-use tradeoff). Since your internal hosts aren’t able to reach other hosts on the
Internet, they have to rely on the bastion host to make proxy DNS requests on
their behalf.
On the other hand, bastion won’t have enough DNS information locally to
properly deliver inbound mail. It needs to be able to query the name server on
mailgate in order to get at the richer set of DNS information available to internal
hosts. Note that there is no difficulty in having a host run a name server locally but
resolve DNS information from a completely different machine.

81

Bastion -- named.conf
options {

directory "/etc/namedb";
version "like nothing you have ever seen";

allow-transfer { 207.90.181.1; 207.90.181.2; };
allow-recursion { 172.16/16; 207.90.187/24; };

};

zone "sysiphus.com" {
type master;

file "ext-sysiphus.hosts";
};

zone "187.90.207.in-addr.arpa" {

type master;
file "ext-sysiphus.rev";

};

zone "." { type hint; file "named.ca"; };

This is the named.conf for the bastion host. Other than some new options (see
below) it's not too different from our original named.conf for mailgate.
It is possible for outsiders to query your running name server and find out what
version of BIND you are running using the following command:

dig @<remote nameserver> version.bind txt chaos

Since certain versions of BIND have known vulnerabilities, you want to hide what
version your name servers are running. The version option allows the
administrator to specify an arbitrary string instead of the actual BIND version
number.
You should use the allow-transfer option to restrict zone transfers to only
those machines which are legitimate secondary servers for your domains. Note that
since it is possible to do zone transfers from slave name servers, you should make
sure that allow-transfer is configured correctly on all of your external
secondary name servers as well (which may involve explaining allow-
transfer to whoever is hosting your secondary name servers) . You should also
configure your firewall to block zone transfers from the outside world as an extra
layer of security (more on this in the last section of this course).
(continues on next slide…)

82

Bastion -- named.conf (cont.)
options {

directory "/etc/namedb";
version "like nothing you have ever seen";

allow-transfer { 207.90.181.1; 207.90.181.2; };
allow-recursion { 172.16/16; 207.90.187/24; };

};

zone "sysiphus.com" {
type master;

file "ext-sysiphus.hosts";
};

zone "187.90.207.in-addr.arpa" {

type master;
file "ext-sysiphus.rev";

};

zone "." { type hint; file "named.ca"; };

(continued from previous slide)
Normally a name server receives a request from an external name server, responds
with the best information it has, and does no further work-- this is a non-recursive
(sometimes referred to as an iterative) query. However, client resolvers (and
sometimes other name servers as we'll see in a moment) generally do recursive
queries when communicating with their local name server-- that is, they rely on
their local name server to do all the work required to look up a given piece of
information (including contacting root name servers and name servers at other
organizations).
Generally, only machines that you own should be making recursive queries via your
name server-- the allow-recursion option specifies the ranges of IP addresses
which are allowed to do recursive queries via this name server. If you allow
outsiders to do recursive queries via your name servers, you make yourself more
vulnerable to certain types of cache poisoning attacks.
Note that all of these new options are most appropriate for your external name
servers. You can apply them to your internal name servers as well, but you may
find this more of an administrative hassle than anything. Aside from having to
maintain the lists of IP addresses in the allow-transfer and allow-
recursion options, it is occasionally useful to be able to query your own internal
name servers and find out what version of BIND they're running.

83

ext-sysiphus.hosts

@ IN SOA bastion.sysiphus.com. hostmaster.sysiphus.com. (

1998042200 ; Serial - year/month/date/revision

3600 ; Refresh from server - 60 minutes

300 ; Retry after failure - 5 minutes

604800 ; Expire data - 7 days

86400) ; Time to live - 1 day

@ IN NS bastion.sysiphus.com.

IN NS ns.lamb.net.

IN NS ns2.alameda.net.

IN MX 10 bastion.sysiphus.com.

* IN MX 10 bastion.sysiphus.com.

First, there's a standard SOA record.
The NS records on bastion list our external secondaries. You will have to remove
these external secondaries from the internal zone files on mailgate.
Next we have an MX record for sysiphus.com-- all mail for
user@sysiphus.com is sent to bastion. Next we have a new sort of MX
record, the wildcard MX record. The wildcard record says send all mail for
subdomains of sysiphus.com (including multiple levels of subdomaining, such
as user@sfo.eng.sysiphus.com) to bastion as well. Wildcard MX
records are useful in split-horizon DNS configurations and dangerous otherwise.

84

ext-sysiphus.hosts (cont).

bastion IN A 207.90.187.10

ns IN CNAME bastion

mail IN CNAME bastion

server IN A 207.90.187.100

www IN CNAME server

ftp IN CNAME server

Here are some standard forward address records that might appear in your external
DNS information. We have two A records-- one for the bastion and another for
an external server that's going to be the machine to serve Web pages and FTP
sessions to the outside world.
Notice this new type of DNS record. CNAME (Canonical NAME, again a really bad
choice of name) are just aliases for hostnames. Here we're saying that
www.sysiphus.com and ftp.sysiphus.com should resolve to
server.sysiphus.com at address 207.90.187.100.
The aliases ns and mail.sysiphus.com don't have any real meaning as far as
DNS or Sendmail, they're just helpful signposts for human administrators.

85

ext-sysiphus.rev

@ IN SOA bastion.sysiphus.com. hostmaster.sysiphus.com. (

1996101600 ; Serial - year/month/date/revision

3600 ; Refresh from server - 60 minutes

300 ; Retry after failure - 5 minutes

604800 ; Expire data - 7 days

86400) ; Time to live - 1 day

@ IN NS bastion.sysiphus.com.

IN NS ns.lamb.net.

IN NS ns2.alameda.net.

100 IN PTR server.sysiphus.com.

10 IN PTR bastion.sysiphus.com.

Here's a pretty standard in-addr.arpa zone file. We've seen lots of these
already.
Note that we are returning the name of the host as the name defined in the A record
for forward lookups, as opposed to any CNAME. Always do this, don't make
yourself crazy.

86

Tweak mailgate named.conf

options {

directory "/etc/namedb";

forwarders {

207.90.187.10;

207.90.187.10;

};

forward only;

};

Remember that we are assuming our internal name servers are unable to reach
Internet connected hosts for DNS information. The forwarders lines cause the
internal name server to send all external DNS queries to bastion to be resolved
(this means that mailgate will be doing recursive queries via bastion-- c.f. the
allow-recursion option we talked about earlier). In the event the query fails,
the local server would normally attempt to contact a remote nameserver, but the
forward only directive prevents this behavior. We list the IP address of
bastion twice so that the local server will retry in the event it fails to get a
response to its first query.
Note that you will have to add similar forwarding statements to all of the other
internal DNS servers. You could use either the IP address for bastion or
mailgate's IP address in the forwarders directive.
Obviously, there is some performance penalty for doing all this forwarding.
Remember, though, DNS servers cache successful lookups, so you really only pay
the performance penalty the first time you look up an external address.

87

/etc/resolv.conf

• bastion has to resolve addresses
using the name server on mailgate

• Both machines should use
domain sysiphus.com

nameserver 172.16.1.10

bastion needs to get its DNS information from mailgate so that it can look up
internal MX records to route email properly for inside users. If it were to obey its
own DNS information, you would have a mail loop since bastion has wildcard
MX records pointing back to itself.
One of Sendmail's security features is that it will only deliver email based on
information from authoritative name servers for a given domain. Since bastion
is using mailgate as a resolver for internal zone information, mailgate must
be an authoritative name server for all internal domains. An authoritative name
server is simply any machine which appears as one of the NS records for the given
zone-- this is why we took pains to make mailgate be at least a secondary server
for all of our internal domains.
Note that there is no contradiction in having a machine running a name server that it
doesn’t resolve hostnames with. Remember that the resolver and the name server
are completely separate. in.named is just another server process (like an FTP or
Web server) that your host might be running.

88

External Email Routing Goals

• bastion has to collect all mail
coming outside and it relay inwards

• bastion also has to handle delivery
of outgoing mail to other sites

• We want to avoid any possible local
delivery on bastion

Remember that due to our wildcard MX record, bastion will be the target for all
mail coming into our company from the outside world. However, user mailboxes
reside on the various internal company mail servers, so bastion should simply
relay this incoming email to those internal servers for final delivery. Not doing
delivery to local mailboxes on the bastion host has the added benefit of avoiding
address-based buffer overflows, attacks involving insecure aliases, and other
security problems with the local delivery mailer.
Aside from being the inbound channel for email, bastion is also the outbound
gateway for mail originating in our company. Based on our assumption that
internal hosts are unable to reach other machines on the Internet, bastion is the
only machine in our hypothetical network configuration which is capable of
forwarding email to other sites.
So, bastion needs rules to route email correctly into and out of our
organization…

89

A Digression Regarding Spam

• In order to operate, spammers use:
– the ability to relay mail through one company's

mail server to users at another organization
– bogus domain names, or omit the domain

portion entirely to masquerade the local domain

Prior to v8.9, Sendmail allowed such
behavior by default

Until fairly recently, most mail servers on the Internet were willing to route mail
from one external organization to users in another external organization. In the
early days of the Internet, it was considered "neighborly" to help out other sites by
delivering email for them when it was accidentally routed to you.
Unfortunately, this behavior is now being exploited by spammers. By using your
servers as a relay, it appears to naïve users and administrators that your server was
the originating point for the spam. Your mail servers may be attacked by outraged
recipients and possibly taken off the air by their efforts.
Another favorite trick of spammers is to create the message using unqualified email
addresses (no domain portion). The first mail server which transmits the mail tends
to add its own local domain to any unqualified sender or recipient addresses-- again
making the mail appear as if it were generated at your site.
Spammers may also use competely made-up domain names since they generally
aren't interested in receiving replies to their spam. If they did, they'd shortly be
knocked off the air.
While earlier versions of Sendmail permitted this kind of behavior (unless the
administrator went through some fairly complicated reconfiguration), things
changed as of Sendmail v8.9…

90

Changes as of Sendmail v8.9

• Relaying not allowed:
– Only deliver to domains in local-host-names...
– ...or for hosts in /etc/mail/relay-domains

• Checks sender domain name validity

• No unqualified sender addresses

Out of the box, Sendmail v8.9 and later do not accept mail destined for any domain
not in /etc/mail/local-host-names. You may list machines which are
allowed to send email to other domains in the (somewhat misnamed)
/etc/mail/relay-domains file. In general you should list all of your
internal IP addresses in this file. You can list partial IP addresses: for example,
172.16 in relay-domains would allow relaying for all hosts in the entire
172.16.0.0 network (a full Class B of addresses). As we have seen in previous
slides, FEATURE(promiscuous_relay) will disable all anti-relaying checks.
Another new feature as of Sendmail v8.9 is automatic checking of the domain
portion of the sender address. If Sendmail is unable to resolve an SOA record for
the domain, mail from that domain is rejected. You can turn off this feature by
enabling FEATURE(accept_unresolvable_domains).
Sendmail v8.9 and later also do not allow the sender address to be unqualified
(contain no domain specifier). This check can be turned off with
FEATURE(accept_unqualified_senders).

91

Where to Use this Functionality

• On hosts receiving mail from outside
– prevents spammers from using you as a relay
– stops spam mail heading for your users

• Less useful on internal machines
– can cause internal mail to bounce
– requires additional configuration

In general, you should enable these checks on any machine that accepts email from
the outside world (in our example, this will be the bastion host). If the entire
world were to take this step tomorrow, the spam problem would nearly vanish in a
very short period of time.
On the internal network, however, all of these features don't have much use. You
want to make it as easy as possible for internal users to send mail back and forth--
even if their mail transfer agents are misconfigured in some way. Also, leaving
these new features on means at least creating a relay-domains file on each mail
server, which is just one more file to update when you renumber or add a network.

92

bastion -- relay.mc
Sendmail configuration file for external relay hosts

include(`../m4/cf.m4')

OSTYPE(`solaris2')

define(`confMAX_HOP',`25')

define(`LOCAL_SHELL_PATH', `/dev/null')

define(`confSMTP_LOGIN_MSG', `$j mailer ready at $b')

define(`confPRIVACY_FLAGS',`noexpn,novrfy’)

define(`confMIME_FORMAT_ERRORS',`False')

FEATURE(use_cw_file)

define(`MAIL_HUB', `mailgate.sysiphus.com')

MASQUERADE_AS(sysiphus.com)

MAILER(smtp)

Changing LOCAL_SHELL_PATH to /dev/null prevents the local Sendmail daemon
from executing any aliases which pipe mail to a program (a mechanism often exploited by
system crackers). This should never be a factor anyway, since all locally delivered mail
should be forwarded to mailgate.
The PRIVACY_FLAGS setting turns off the EXPN and VRFY commands and prevents
outsiders from gaining information about users in your domain. The EXPN command will
show all email addresses assigned to a given alias-- bastion shouldn't have any aliases
configured on it, but turning off EXPN adds and extra layer of security. VRFY verifies a
single email address, but only is useful if local delivery is going to be performed on this
machine. Again, bastion should never be doing local delivery so VRFY is not that much
of an issue.
MAIL_HUB causes all mail that would have been delivered locally on this machine to
instead be forwarded to mailgate for delivery. Generally speaking, "local" email for this
machine will probably only be generated by cron and other system programs-- nobody
should be sending email to bastion from outside.
The MASQUERADE_AS directive only applies to mail generated on this machine.
Note that this file does not contain the FEATURE(promiscuous_relay) and
FEATURE(accept_unqualified_senders) tags to disable anti-spam checks. As
we mentioned earlier external email gateways like bastion are the correct place to do
spam filtering for your organization.

93

bastion -- Other Files

local-host-names:
bastion.sysiphus.com

relay-domains:
sysiphus.com

eng.sysiphus.com

corp.sysiphus.com

172.16

Unlike our previous examples, we did not enable
FEATURE(promiscuous_relay) on bastion, so we need to make sure that
the Sendmail anti-relaying checks don't interfere with normal delivery of
sysiphus.com mail.
The only "local" address for the bastion host is the machine itself. Note that
under normal operations nobody should be sending email to
user@bastion.sysiphus.com. In any event we defined MAIL_HUB in
bastion's sendmail.cf file (previous slide) so that local delivery won't be
attempted on bastion even if mail shows up with this address.
However, we do want to make sure that bastion passes along email for our
internal domains, so we add these domains to the relay-domains file (you may
also wish to add the {sfo,bos,dfw}.eng.sysiphus.com domain names
just to be on the safe side). We also need to allow hosts on our internal networks to
relay email out of the company, so we also add our internal address space to the
relay-domains file.

94

Internal Email Routing Goals

• Outgoing email has to end up at
bastion

• Internal email should stay on internal
networks

• Simplify email configuration for
subdomains

We now have configured the bastion host to properly relay internal email to the
appropriate internal mail server-- mostly by simply having bastion resolve
internal zone information from mailgate which has the correct MX records for all
internal zones. What do we do about internal email routing, though?
On the one hand, we'd like to make email routing as simple as possible for our
subdomain administrators. Aside from making their lives easier, limiting the
number of machines that have to be "smart" about internal email routing means that
mishaps are less likely. However, if there are only a limited number of email
routers for our company, then the loss of the mail routers can stop internal mail
delivery.
We certainly would like to keep our internal email truly internal to the company.
Mail from one employee to another should never touch our DMZ network or any
other external network.

95

Internal Email Routing Plan

• Subdomain mail servers will deliver
local mail normally

• All other email gets forwarded to
mailgate

• mailgate forwards internal email to
appropriate subdomain

• All other email goes to bastion

Our strategy is going to be to have all subdomain mail servers forward non-local
mail to a single, central mail routing hub-- in our case
mailgate.sysiphus.com. mailgate will be able to route mail between
subdomains as well as forward all outgoing mail to bastion.
Obviously, mailgate now becomes a single point of failure. Normally we'd have
two or more machines performing this routing function, listed at the same MX
priority level. This allows the subdomain servers to automatically forward email to
whichever machine happens to be up.

96

New Config for mailhub.corp
include(`../m4/cf.m4')

OSTYPE(`solaris2')

define(`confMAX_HOP',`25')

define(`confSMTP_LOGIN_MSG', `$j mailer ready at $b')

define(`confMIME_FORMAT_ERRORS',`False')

FEATURE(promiscuous_relay)

FEATURE(accept_unqualified_senders)

FEATURE(use_cw_file)

define(`SMART_HOST', `mailgate.sysiphus.com')

MASQUERADE_AS(corp.sysiphus.com)

MAILER(smtp)

Here's a slightly modified version of the m4 macro file for
mailhub.corp.sysiphus.com. SMART_HOST says to forward all email that
isn't local to this machine to mailgate for further processing. This means that
mailhub.corp will send all mail to mailgate that isn't specifically destined
for corp.sysiphus.com (whether that's outgoing email or email for another
subdomain like eng.sysiphus.com).
You would need to add a similar SMART_HOST line to the m4 macro files for the
eng.sysiphus.com mail servers as well.
SMART_HOST is essentially the logical inverse of the MAIL_HUB directive we
used on bastion.

97

New Config for mailgate
include(`../m4/cf.m4')

OSTYPE(`solaris2')

define(`confMAX_HOP',`25')

define(`confSMTP_LOGIN_MSG', `$j mailer ready at $b')

define(`confMIME_FORMAT_ERRORS',`False')

FEATURE(promiscuous_relay)

FEATURE(accept_unqualified_senders)

FEATURE(use_cw_file)

MASQUERADE_AS(sysiphus.com)

FEATURE(`mailertable', `dbm -o /etc/mail/mailertable')

MAILER(smtp)

Now we need a simple mechanism for configuring the more complex email routing
environment on mailgate.
The mailertable feature is a mechanism to allow administrators to set up a
simple email routing database to quickly add special routing instructions for
different email domains without hacking the sendmail.cf file directly. In this
case, Sendmail will do lookups in the NDBM files
/etc/mail/mailtertable.{dir,pag} -- the -o flag means that these files
are optional, so Sendmail will run without complaint even if there is no
mailertable database on this machine.
A sample mailertable file for sysiphus.com is shown on the next slide...

98

/etc/mail/mailertable

corp.sysiphus.com smtp:mailhub.corp.sysiphus.com

eng.sysiphus.com smtp:eng.sysiphus.com

sysiphus.com local:

. smtp:bastion.sysiphus.com

First we create a text file called /etc/mail/mailertable. The file has two
columns: the lefthand column gives a domain name and the righthand column
specifies a mailer to use and a destination host.
In our case, mail for user@corp.sysiphus.com needs to go to
mailhub.corp and mail for the Engineering subdomain needs to go to any one of
the Engineering mail servers (recall that eng.sysiphus.com actually is an MX
group which points to the three mailhub.{sfo,bos,dfw}.eng machines). Mail
for user@sysiphus.com should simply be delivered locally on mailgate. All
other email should be forwarded to the bastion host for further delivery.

99

How to Create NDBM Files

• Sendmail sources include makemap
% cd sendmail-8.9.x/makemap
% sh Build (lots of output)
% /bin/su

Password:

chown root /etc/mail

cp obj.SunOS.5.5.sun4/makemap /etc/mail

cd /etc/mail

vi mailertable (per previous slide)
./makemap dbm mailertable < mailertable

#

The Sendmail distribution includes the makemap program which will build a variety
of different database file formats from a text file. There is a Build script for
makemap as for the sendmail program. You may install the makemap binary
anyplace on the system.
We are copying the makemap program into /etc/mail, which is normally owned
by user bin on Solaris machines and some others. In order to copy the new binary
into place and to be able to make the *.{dir,pag} files in this directory, we make
the directory owned by root.
Having created the makemap binary, we type our mailertable information into
/etc/mail/mailertable (remember, Sendmail is looking for
mailertable.{dir,pag}).
The first argument to makemap is the database type and the second argument is the
base filename to use when creating the *.{dir,pag} files. makemap reads in the
source file on the standard input. Every time you update the source file you must re-
run the makemap program (you might consider creating a Makefile which rebuilds
the NDBM files whenever you type make in the /etc/mail directory)-- you may
want to create a Makefile or shell script which does this task automatically.

100

Additional BIND Security

• Overview
• Preparing the Directory
• Starting the Name Server

This section covers how to run BIND in a more secure fashion at the expense of
additional administrative complexity. It is probably most appropriate to make this
extra effort only on externally reachable name servers for your organization.

101

Configuration Options

• BIND v8 allows named to run without
superuser privileges

• BIND v8 can also be run chroot()ed

• Helps protect against buffer overruns
and other compromise attacks

• More difficult setup and management

One of the improvements that appeared with the release of BIND v8 was the ability
to run your name server as some user other than root. This means that in the event
of a successful buffer overflow attack or other remote compromise, the attacker will
only have the privileges of some non-root user. This is a significant security
enhancement.
BIND v8 also allows the name server to be run in a captive chroot()ed
environment. This means the attacker will only be able to manipulate files in the
chroot()ed environment even if they successfully subvert your name server
daemon.
As we will see, setting up this environment is somewhat complicated– but not that
bad if somebody figures it out for you!

102

Prepare Base Directory
mkdir /var/named

chmod 511 /var/named

chown root /var/named

chgrp root /var/named

cd /var/named

mkdir –p etc dev var maps/master usr/lib \

usr/local/sbin usr/share/lib/zoneinfo/US

chmod -R 111 etc dev var maps usr

chown -R root etc dev var maps usr

chgrp -R root etc dev var maps usr

Note that in this section we will be showing a Solaris-specific configuration
procedure. Information about Linux configuration is available in the Securing
Linux: Step-by-Step guide published by the SANS Institute. Note also that this
procedure assumes we have already set up an unprivileged dns user and group ID.
You will need to be the super user to perform these configuration steps.
First we need to create the basic chroot()ed directory hierarchy we will be using
for the name server. You can put this directory structure anywhere in your
filesystem that you wish– in this case, we will be rooting our tree under
/var/named.
We wish to make the directory permissions as restrictive as possible. In particular,
any directories that we don't want the name server to write into should be owned by
root (since the name server will be running as our unprivileged dns user). Also,
most directories should simply be mode 111 (only the execute bit set) so that the
dns user can read files inside the directories, but not get directory listings.

103

Copy named & named-xfer

cd /usr/local/sbin

cp named-xfer /var/named/usr/local/sbin

cd /var/named/usr/local/sbin

chmod 111 named-xfer

chown root named-xfer

chgrp root named-xfer

Under normal operations, you name server needs a copy of named-xfer. Copy
the binary from /usr/local (or wherever it exists on your system) into the
appropriate location in the chroot()ed hierarchy.

104

Copy Shared Libs
cd /usr/lib

cp libnsl.so.1 libsocket.so.1 libc.so.1 \

libdl.so.1 libintl.so.1 libmp.so.1 \

libw.so.1 ld.so.1 /var/named/usr/lib

cd /var/named/usr/lib

chmod 555 *

chown root *

chgrp root *

named-xfer is probably dependent on one or more shared libraries– you can
determine exactly which libraries using the ldd command:

% cd /usr/local/sbin
% ldd named-xfer
named-xfer:

libnsl.so.1 => /usr/lib/libnsl.so.1
libsocket.so.1 => /usr/lib/libsocket.so.1
libc.so.1 => /usr/lib/libc.so.1
libdl.so.1 => /usr/lib/libdl.so.1
libintl.so.1 => /usr/lib/libintl.so.1
libmp.so.1 => /usr/lib/libmp.so.1
libw.so.1 => /usr/lib/libw.so.1

Note that ld.so.1 is also always required in addition to any shared libraries
shown by ldd.
Note that since you have the BIND source code, you could attempt to compile a
statically-linked version of named-xfer (one which is not dependent on any
shared libraries). Note that some operating systems (notably Solaris) make this
rather difficult to do, however. For more information on compiling statically-linked
binaries under Solaris, see:

http://www.deer-run.com/~hal/sol-static.txt

105

Make Devices
cd /var/named/dev

mknod conslog c 21 0

mknod null c 13 2

mknod tcp c 11 42

mknod ticotsord c 105 1

mknod udp c 11 41

mknod zero c 13 12

chmod 666 *

chown root *

chgrp sys *

The name server also needs several device files to function properly. The
arguments to mknod are a c indicating that these are character-special device files
(don't worry about what this means) and the major and minor device numbers
appropriate for the device. All of this information can be gathered by doing an ls
–l on the corresponding system device and then copying the parameters in the
mknod command.
Note that the file permissions on these devices is not a typo– all of the devices listed
here are globally writeable.

106

Copy Misc Files
cd /var/named/etc

cp /etc/netconfig .

chmod 444 netconfig

chown root netconfig

chgrp root netconfig

cd ../usr/share/lib/zoneinfo/US

cp /usr/share/lib/zoneinfo/US/Pacific .

chmod 444 Pacific

chown root Pacific

chgrp root Pacific

The netconfig file is used by the name server to figure out which network
device to choose for a given service/protocol. The file under zoneinfo contains
information on the local time zone so that time stamps that named emits are
expressed in local time. Obviously, you want to choose the appropriate time zone
information file for your local site– it may be simpler just to copy the entire
zoneinfo database rather than an individual file.

107

Final Setup
cd /var/named

mkdir -p var/run maps/slave

chmod 700 var/run maps/slave

chown dns var/run maps/slave

chgrp dns var/run maps/slave

chmod 644 etc/named.conf

chown root etc/named.conf

chgrp root etc/named.conf

chmod 644 maps/master/*

chown root maps/master/*

chgrp root maps/master/*

Assuming we have already set up a dns user and group ID, we want to create some
directories under the chroot()ed hierarchy where the running name server can
write files. In particular, named needs to write its PID and other debugging
information into some directory– /var/named/var/run in our example– and
named-xfer needs to be able to write the zone files it downloads into some
directory– /var/named/maps/slave in our example.
We also need to make a copy of the named.conf file in the chroot()ed
hierarchy since named chroot()s itself before even opening the named.conf
file. It turns out we will have to make some modifications to named.conf for the
chroot()ed environment (see next slide).
We want to make sure that the primary zone files (stored in
/var/named/maps/master) and the named.conf file cannot be overwritten
in the event of a name server compromise, so we make them owned by root and
not the dns user.

108

Change named.conf
options {

directory "/var/run";

version "like nothing you have ever seen";

allow-transfer { 207.90.181.1; 207.90.181.2; };

allow-recursion { 172.16/16; 207.90.187/24; };

};

zone "." {

type hint;

file "/maps/master/named.ca";

};

[…]

Recall earlier we mentioned that the directory option actually changes the
default working directory for BIND (the value of DESTRUN that was compiled into
the binary). If we want our chroot()ed name server to write its debugging files
in some particular location, we need to set the directory option appropriately.
However, changing the directory option means we need to use absolute
pathnames in all of our zone declarations, rather than relative pathnames.
Note that since named chroot()s prior to reading named.conf, all of the
pathnames listed here are rooted within the /var/named directory– i.e.,
/var/named/var/run and /var/named/maps/master/named.ca.

109

Starting the Name Server

/usr/local/sbin/named \

-u dns –g dns –t /var/named

Don’t forget to update your boot scripts!

You can start the chroot()ed named from the command line as shown above.
The –u and –g options specify the user and group IDs that the name server should
run under, and –t specifies the root of the chroot()ed hierarchy.
Note that you will have to make appropriate modifications to your boot scripts so
that the chroot()ed name server is started at boot time as well.

110

Stopping Spam

FEATURE(delay_checks)

FEATURE(access_db)

FEATURE(dnsbl)

This section contains information on more aggressive spam filtering techniques
beyond the simple anti-relaying and sender domain checks that were instituted in
Sendmail v8.9. As with those checks, however, the appropriate place to implement
these additional features is on your external email servers that exchange email with
other Internet sites.
For more information on Sendmail anti-spam functionality, see:

http://www.sendmail.org/m4/anti-spam.html

http://www.sendmail.org/tips/relaying.html

111

Stop and Think!

• Aggressive anti-spam controls mean
higher risk of false-positives

• This is definitely a business decision

• Discuss plans with senior management
prior to implementation

• However, always prevent relaying

The more aggressive you are in fighting spam coming into your company, the
greater your likelihood of a false positive– that is, rejecting legitimate email from
the outside (possibly a customer or business partner). Fundamentally, your
organization needs to make a business decision about their tolerance for this risk
versus the cost to the organization of their users being peppered with spam mail (to
say nothing of the disk space and bandwidth consumed).
Some companies which use email as a mechanism for communicating with
customers may fear rejecting email from a customer who hasn't properly configured
their mail server and is sending out email from a bogus domain or with unqualified
addresses. Other organizations (particularly those that pay for email by the byte)
are much less tolerant.
At a minimum, however, organizations should prevent relaying at all costs.

112

Some Useful Anti-Spam Features

FEATURE(dnsbl)
– Subscribe to a DNS-based blacklist maintained

by an external organization

FEATURE(access_db)
– Manually maintain your own blacklist

FEATURE(delay_checks)
– Also allows you to use access_db as a "white-

list" to avoid anti-spam checks on certain email

Various organizations now maintain automatically updated lists of known
spammers and/or open relays on the Internet. Several of these lists are managed in
special DNS zones so that Sendmail and other mailers can look up hosts in these
blacklists and simply reject connections from these sites. FEATURE(dnsbl) is
the mechanism for enabling this functionality in Sendmail.
The access database, enabled with FEATURE(access_db), is a list of IP address
ranges, domains, and/or email addresses which you want to reject email from. As
we'll see, you have the option of silently discarding email or rejecting it with a
(possibly customized) error message.
Actually, the access database allows administrators to list sites and/or individual
email addresses that they do want to accept email from. Unfortunately, many of the
anti-spam checks would normally happen before the access database is consulted.
FEATURE(delay_checks) changes the order of processing on the anti-spam
checks so that the access database can be used to both permit and deny email from
specific sources.

113

FEATURE(delay_checks)

• Means wait for anti-spam checks until
sender and recipient addresses entered

• Also, access database lookup is now
done before other checks

• If access database entry says to pass
email along, other checks are skipped

By default, Sendmail's anti-spam checks are aggressive about rejecting email. For
example, the IP address of the remote end of the connection is checked against
DNS-based blackhole lists (the dnsbl feature) as soon as the connection is made.
Similarly, email from certain sender addresses may be rejected immediately, before
the recipient address is even entered.
Enabling FEATURE(delay_checks) causes Sendmail to wait until both the
sender and the recipient address have been entered before doing any anti-spam
checking. Also, lookups in the access database will be done before other checks–
this allows the administrator to specify certain emails that should always be
accepted, regardless of what any of the other anti-spam checks would normally do.
I use this feature to accept email from certain specific email addresses of friends
and business associates who happen to be using ISPs whose mail servers are listed
in one or more of the DNS-based blackhole lists.

114

The Access Database
• Database can be used to check:

– IP addresses of remote hosts
– Sender addresses
– Recipient Addresses

• Possible actions include:
– Rejection (with or without error message)
– Accept for local delivery
– Accept for relaying

The macro for enabling the access database is similar to the mailertable feature we
saw earlier:
FEATURE(`access_db', `dbm -o /etc/mail/access')
Again, the dbm argument means that the access database is going to be a DBM file
(like the aliases and mailertable files), and the –o option means that Sendmail will
run without complaining even if the database doesn't exist. The base name of the
database files is /etc/mail/access, though the actual files will be named access.dir
and access.pag.
The access database can key on the IP address of the remote end of the SMTP
connection, the sender address (which you should remember might be forged),
and/or the recipient address. Possible actions include rejecting the email, accepting
it for local delivery, or allowing the email to be relayed elsewhere. If the email is
rejected it can either be silently discarded, or an error message can be returned. In
fact, the administrator can specify the error message to be returned if desired.
For some examples, turn to the next slide…

115

Sample Database Entries

Connect:192.168.1 REJECT

Connect:10.1 DISCARD

Connect:10.10.164 ERROR:"550 Jerks!"

From:somedomain.com REJECT

From:bob@somedomain.com OK

To:abuse@sysiphus.com RELAY

In the first line we've decided that network 192.168.1.0 is a haven for spammers and
we won't accept any email from hosts in this domain.
In the second line we've decided that we don't want to let on that we're not
accepting email from network 10.1.0.0. The messages will be accepted by our
server then thrown away.
The third line demonstrates how you can actually specify an individualized error
message for sites that you particularly don't like for some reason. Actually, this
feature can also be used to supply a different type of error message– for example
one indicating that the recipient address doesn't exist, which might possibly cause
the email address to be removed from the spammer's list of email addresses (in
reality, the spammer rarely sees the bounce message, so this tactic really doesn't
work).
The next two lines cause us to reject all email where the sender address is in
somedomain.com, except when the email comes from our friend
bob@somedomain.com. Note that the most specific match is preferred.
The last line says that we'll accept email from anywhere to our
abuse@sysiphus.com address and relay this email inward to our internal mail
servers.
More on the distinction between OK and RELAY on the next slide…

116

Access Database Warnings

• Have to convert text database into a
database file using makemap

• OK does not cause anti-relay or dnsbl
checks to be skipped– use RELAY

• However, RELAY may allow spammers
to relay mail by spoofing addresses

First, remember that after creating the text file which contains your access database
rules, you need to run the makemap program in order to convert this file into a
DBM file for Sendmail. Check out the slide which describes building the
mailtertable DBM file at the end of the DNS and Sendmail vs. Firewalls
section earlier in the course.
Note that OK only means that the mail message is acceptable as far as local delivery
on the machine with the access database. If the mail needs to be routed further into
the organization, then the usual anti-relaying checks are done. The lookups in
DNS-based blackhole lists (as enabled with the dnsbl feature) will also be
performed. This means that you can't use OK to bypass these checks– you must use
RELAY instead.
However, be aware that RELAY does not mean only "allow this email to be relayed
inwards to my local mail servers"; it means "allow this email to be relayed to any
machine on the Internet". If you allow relaying based on the sender email address
(From: on the lefthand side of the access database and RELAY on the righthand
side), be aware that a spammer could forge the sender email address and use your
server as a promiscuous relay to spam other sites.

117

DNS Blacklists

• IP addresses of known spam sources
are placed in a special DNS zone

• On connect, Sendmail checks these
zones for address of remote machine

• If lookup succeeds, connection is
dropped with an error message

Sendmail v8.9 included support for FEATURE(rbl) which allowed administrators
to subscribe to the original DNS-based blackhole list run by the MAPS project (see
http://maps.vix.com/). However, other organizations quickly began to use
a similar strategy for maintaining blacklists and Sendmail v8.10 replaced
FEATURE(rbl) with the more general FEATURE(dnsbl).
Simply, FEATURE(dnsbl) allows the local administrator to specify a particular
DNS domain. Whenever a new SMTP connection is made to the local server,
Sendmail looks up the IP address of the remote end of the connection in the
specified DNS domain. If there's a match, then the connection is rejected.
FEATURE(dnsbl) allows the administrator to specify the error message, so the
site knows why they were rejected and what they can do to clean up the problem.
It's important that the error message be descriptive in this fashion, because the goal
of this exercise is to embarrass the remote site admins into closing open relays–
when their local users start complaining about bounce messages, these problems
tend to get resolved.

118

Using FEATURE(dnsbl)
FEATURE(dnsbl, `inputs.orbs.org',

`Rejected- see http://www.orbs.org/blocked.html')

FEATURE(dnsbl, `outputs.orbs.org',

`Rejected- see http://www.orbs.org/blocked.html')

FEATURE(dnsbl, `spamsource-netblocks.orbs.org',

`Rejected- see http://www.orbs.org/blocked.html')
FEATURE(dnsbl, `spamsources.orbs.org',

`Rejected- see http://www.orbs.org/blocked.html')

FEATURE(dnsbl, `relays.mail-abuse.org',

`Rejected- see http://www.mail-abuse.org/rss/')

FEATURE(dnsbl, `blackholes.mail-abuse.org',
`Rejected- see http://www.mail-abuse.org/rbl/')

FEATURE(dnsbl, `dialups.mail-abuse.org',

`Rejected- see http://www.mail-abuse.org/dul/')

The two arguments after dnsbl are the domain that Sendmail should do lookups in, and the error
message that should be returned in the bounced email if the lookup is successful. The URLs which
appear in the error messages above are informational pages so that end-users can know why their
email was rejected and hassle their local admins. Note that you may "subscribe" to many different
blacklists– Sendmail will check each domain in the order specified. based on my experience, the
above ordering is the most efficient– that is, the blacklists listed first on this page tend to reject the
most email. Subscribing to the ORBS blacklists almost guarantees that you'll be getting some false-
positives.
The two most popular sources of DNS blacklists are ORBS (http://www.orbs.org/) and the
original MAPS project (http://maps.vix.com/). Each of these organizations actually
maintains several different blacklists which can all be used simultaneously.
The ORBS "inputs" list is a list of known open relays, while "outputs" are hosts which are the
endpoint of a series of relay hops which allow promiscuous relaying. "spamsources" are IP
addresses which are known to directly generate spam and "spamsource-netblocks" are blocks of
addresses which are known to harbor spammers or which provide other support resources for
spammers (like spamming software).
The MAPS "relays" domain is a list of open relays known to the MAPS project (note that the MAPS
"relays" domain and the ORBS "inputs" domains do not always completely overlap). "blackholes"
is a list of sites that the MAPS project has chosen to blackhole because they emit spam. "dialups" is
a list of IP address ranges used by ISPs for dialup pools– hosts in these IP address ranges should be
using their local ISP's mail servers for relaying mail, rather than sending email directly. Note that
ISPs are encouraged to provide their dialup netblocks to the MAPS project so that they can be
included in the "dialups" list.

119

Virtual Domains

• What? Why?
• Parallel Domains
• Virtual Domains

There used to be a time when sites only owned multiple domain names when they
merged with another company or decided to change names for other reasons. The
explosion of the Internet and vanity domains has meant that lots of people are
hosting domains for other organizations.
Frankly, a lot of these hosting companies do poor job of pretending to be multiple
domains. It's not much harder to do it right, as we'll see in this section.

120

What Are We Talking About?

• When you pretend to be somebody
other than your primary domain

• "Parallel" Domains
– Different domains, same hosts
– Useful for transitions/mergers and copyright

• "Virtual" Domains
– Manage DNS for another organization
– Forward mail to recipients in another domain

So, there are two types of domain masquerading. Running parallel domains means
running two different domain names but using the same hostnames, zone contacts,
and network architecture for both domains. You see this when two companies
merge or a company changes names. For example, your author used to work at
QMS (the laser printer people) which owned imagen.com (an acquisition),
qms.com, and aqm.com (that's a long story, but it was QMS' NASDAQ stock
symbol).
True virtual domains mean www.virtual.com is a completely different beast
from www.sysiphus.com. Generally, one site will manage DNS and do Web
hosting for multiple virtual domains and arrange for mail sent to users in that
domain to get forwarded someplace else (maybe a mail account run by the hosting
service, maybe another ISP).

121

Parallel Domains: DNS Config
zone "sysiphus.com" {

type master;

file "sysiphus.hosts";

};

zone "deer-run.com" {

type master;

file "sysiphus.hosts";

};

Frankly, DNS for parallel domains is dead easy. You don't even have to create a
new zone file, just use the one for the real domain. Don't think this works? Check
out the next slide…
By the way, in reality deer-run.com is the author's real domain and
sysiphus.com is the fake domain.

122

Why Does This Work?
@ IN SOA mailgate.sysiphus.com. hostmaster.sysiphus.com. (

1998042200 ; Serial - year/month/date/revision

86400 ; Refresh from server - 60 minutes
300 ; Retry after failure - 5 minutes

604800 ; Expire data - 7 days
86400) ; Time to live - 1 day

@ IN NS mailgate.sysiphus.com.

IN NS ns.lamb.net.
IN NS ns2.alameda.net.

IN MX 10 mailgate.sysiphus.com.

mailgate IN A 172.16.1.10

Remember the beginning of the course where we said that unqualified names were
useful in the first column of DNS zone files and fully qualified names were useful
in the last column? Parallel domains is the reason.
Remember that @ expands to the domain given in the named.conf file, so we're
good there. The NS and MX records for both deer-run.com and
sysiphus.com end up being created properly-- both pointing at the real host
mailgate.sysiphus.com.
The A record defines both mailgate.deer-run.com and
mailgate.sysiphus.com with IP address 172.16.1.10. The file for the
in-addr.arpa domain has the mailgate.sysiphus.com name hard-coded
in, but that's OK.

123

What About Mail?
• Add domain name in local-host-names

on bastion and mailgate

• Add new domain to relay-domains file
on bastion

• Restart Sendmail on both machines

All you have to do to get mail working for parallel domains is to make sure the new
domain is listed as local in the local-host-names files on bastion,
mailgate, and any other internal machines that will be receiving mail for the
domain. Also update relay-domains on bastion so mail from outside won't
be rejected as a relay attempt.

124

DNS For Virtual Domains

• Set up new zone file, manage it
separately

• Set up MX records for zone to
forward email to your main mail host

• Probably want different IP addresses
for other services like Web servers

For truly virtual domains, you'll need to set up a completely separate zone database
for the new domain. It's likely you'll use the same in-addr.arpa zone. It's OK
for PTR records in the same file to return hostnames in different domains-- your
nameserver doesn't care.
We're going to be doing some interesting Sendmail hacks to pretend we're the mail
server for another domain, so just point all of your virtual domain MX records to one
central server (bastion and/or mailgate in our sysiphus.com example).
You don't need to manage a separate mail server for each new domain.
Because we're maintaining a different zone file for each virtual zone, you can use
different IP addresses for www.virtual.com and www.sysiphus.com. If
you can't afford separate hardware, look at the ifconfig manual page on you
system and learn about virtual interface configuration.

125

virtusertable Feature
include(`../m4/cf.m4')

OSTYPE(`solaris2')

define(`confMAX_HOP',`25')

define(`confSMTP_LOGIN_MSG', `$j mailer ready at $b')

define(`confMIME_FORMAT_ERRORS',`False')

FEATURE(promiscuous_relay)

FEATURE(accept_unqualified_senders)

FEATURE(use_cw_file)

MAILER(smtp)

MASQUERADE_AS(sysiphus.com)

FEATURE(`mailertable', `dbm -o /etc/mail/mailertable')

FEATURE(`virtusertable', `dbm -o /etc/mail/virtusertable')

Sendmail v8.8 added the virtusertable feature to allow admins to fake mail
delivery for multiple virtual domains. The arguments in the second part of the
virtusertable declaration describe how the virtusertable database is
formatted.
In this case, the virtusertable will be an NDBM database file, just like the
mailertable database we saw in the previous section. As with the
mailertable, you will need to first create a text version of the
virtusertable (see next slide) and then run makemap to create the NDBM
file.
Note that we're assuming the virtusertable database is going to be running on
mailgate. Theoretically, we could run the virtusertable database on the
bastion host. However, aside from simplifying life by consolidating all of the
"interesting" email routing tasks on single machine, we are also protecting our
virtual domains by not running their email off of an external server.

126

Sample virtusertable

• You can map users or entire domains
info@deer-run.com info@sysiphus.com

hal@deer-run.com hal@eng.sysiphus.com

laura@deer-run.com laura@corp.sysiphus.com

@deer-run.com autoresponder@sysiphus.com

• But musn't nest addresses
BAD! Can't have one virtual domain refer to another!

postmaster@example.com hal@deer-run.com

hal@deer-run.com hal@eng.sysiphus.com

In the first example we assign some addresses in the domain deer-run.com to
real addresses in sysiphus.com. On the last line we send all other addresses in
the domain to an autoresponder alias (which perhaps responds to the sender
saying the message is invalid).
One thing virtusertable does not allow is having a virtual address which
refers to another virtual address. You will generate an error message because
Sendmail will not see the second definition. Since the same real address can map to
multiple vitual addresses in the file, this is really not a problem. The correct way to
write the two lines in the lower example is

Correct. Both lines use real email address.

postmaster@example.com hal@eng.sysiphus.com

hal@deer-run.com hal@eng.sysiphus.com

127

local-host-names

• bastion must list virtual domains in
local-host-names to trigger MAIL_HUB

• Also list domains in local-host-names
file on mailgate

Assuming you're going to do the virtual domain faking on mailgate, you have to
tell the bastion that the virtual domains are local so that it forwards the mail
inwards-- since the virtual domains appear in local-host-names, the
MAIL_HUB directive on the bastion will cause this email to be relayed directly
to mailgate.
To activate the virtusertable, make sure all of your virtual domains are listed
in the local-host-names file on mailgate. Like aliases, the
virtusertable database is only consulted during a local delivery attempt.

128

Majordomo and Mailing Lists

• About Majordomo
• Building and Installing
• Creating Mailing Lists

In this section we're going to talk about how to use the freely available Majordomo
software to create and manage mailing lists. Majordomo is pretty much the de facto
choice for Internet mailing list management.
Mailing list are often better than creating an alias with a defined list of users. For
one thing, users and the list manager can subscribe and unsubscribe without
administrator intervention. You can control who is allowed to subscribe or send
email to the list.
Majordomo also has built-in archiving and digest functionality. We won't discuss
those features in this tutorial, however.
The downside is that Majordomo is a big Perl script. For very high volume lists or
sites that run a lot of mailing lists, Majordomo may not be a good choice.

129

What is Majordomo?

• A set of Perl scripts originally written
by Brent Chapman

• Handles subscribing/unsubscribing
folks from mailing lists

• Delivery of messages ultimately
handled by Sendmail

• Fine for reasonably low-volume lists

Majordomo was originally written by Brent Chapman. The current maintainer is
Chan Wilson. Chan keeps threatening to do a major rewrite of the code but never
seems to have time.
Majordomo's job is to subscribe and unsubcribe people from mailing lists and to
resend mail that's sent to the list (so it can control who's allowed to post to the list,
etc.). Majordomo hands everything off to Sendmail to actually get delivered, so
every time a message comes into the mailing list, three processes are actually run to
handle it: mail is received by Sendmail, the Majordomo Perl script is forked,
Sendmail invoked again to send mail out. This can cause heavy loads and memory
usage on machines doing mailing list expansion for busy lists. Many organizations
run Majordomo on its own machine so the resources it consumes don't impact other
services.

130

Majordomo Resources

• The source of all knowledge:
http://www.greatcircle.com/majordomo/

• Majordomo FAQ:
http://www.cis.ohio-state.edu/~barr/majordomo-faq.html

• Comparison of list mgmt software:
ftp.uu.net

/usenet/news.answers/mail/list-admin/software-faq

The Majordomo software is still kept at Great Circle Associates (the consulting
company that Brent Chapman started). The FAQ is at Ohio State University and is
maintained by Dave Barr. Read the FAQ!
There's an OK comparison of your options are far as list management software in
one of the news.answers FAQs. I share most of the author's prejudices.

131

Getting Ready

• Pick a user and group for Majordomo
– Most sites create a new majordomo user
– OK to run software as group daemon

• Pick a local directory for install

• Don't forget a local copy of Perl!

You need to do a little prep work before installing Majordomo. First pick an
account for Majordomo to run as. root is not a good choice. Most sites create a
special majordomo user with its own unique UID. This is a good choice.
You want to install Majordomo on a non-NFS-mounted directory so your mailing
lists don't fail spectacularly when your NFS server dies. Since the Majordomo
software is written in Perl, you also need a copy of Perl on your local drive.

132

Building Majordomo

• Download software
ftp.greatcircle.com

/pub/majordomo/majordomo.tar.gz

• Unpack and build
% zcat majordomo.tar.Z | tar xf -

% cd majordomo-1.94.4

% vi Makefile (see next slide)
% cp sample.cf majordomo.cf

% vi sample.cf (see notes)
% make wrapper

Now grab the software from Great Circle and unpack it. You need to edit the
Makefile as discussed on the next slide.
You also need to copy the sample.cf file to majordomo.cf and then edit your
majordomo.cf file. In this file you need to set

$whereami The local domain

$sendmail_command /usr/lib/sendmail (?)
make wrapper actually builds a suid binary which is used to safely invoke the
Majordomo scripts as the majordomo user. Perl has historically had problems
with its suid support, so the Majordomo developers figured they better write their
own wrapper.

133

Things to Set in Makefile

PERL Location of Perl binary
CC C compiler
W_HOME Majordomo install dir
W_USER UserID for Majordomo
W_GROUP GroupID for Majordomo
TMPDIR Place for temp files

These are the variables you need to set in the Majordomo Makefile.
Again, your life will be better if your Perl binary is on a local drive and not an NFS
directory.
I often install Majordomo in /etc/mail/majordomo, but you need a lot of

space in your root filesystem for this (/opt/Majordomo and
/var/majordomo are also good choices).
The default TMPDIR for Majordomo is /var/tmp-- you'll get better performance
on Sun systems if you use /tmp which is a RAM disk.

134

Install Process
% /bin/su

Password:

make install

make install-wrapper

vi /etc/aliases (see notes)
newaliases

/etc/mail/aliases: 24 aliases, longest 96 bytes, …

^D

% cd /etc/mail/majordomo

% ./wrapper config-test

(… lines of output deleted …)
Nothing bad found! Majordomo _should_ work correctly.

(… lines of output deleted …)

Once you've built the Majordomo wrapper script, you need to install the
Majordomo scripts and the wrapper binary.
Edit your aliases file and add these aliases:

majordomo: \

"|/etc/mail/majordomo/wrapper majordomo"

owner-majordomo: hal

majordomo-owner: hal

This way users can send mail to majordomo@sysiphus.com in order to
subscribe or unsubscribe from mailing lists. Obviously the owner aliases should
point to a real human being at your site. Don't forget to run newaliases when
you're done!
Once you've completed the install process, run the config-test script via the
Majordomo wrapper. Make sure you're not root when you do this or the results
won't make sense. In all the output of the config-test script you're looking for
the "Nothing bad found!" message. If you don't find this message then you
have to read the rest of the output and figure out what you did wrong.

135

Creating a Mailing List

• Step 1: Creating initial list file
cd /etc/mail/majordomo/lists

touch rock-pushers

• Step 2: Create descriptive info file
vi rock-pushers.info

In example, we're creating the rock-pushers@sysiphus.com alias. Users
will be able to send mail to the members of the list by sending mail to this address,
and will be able to subscribe/unsubscribe from the list by sending mail to rock-
pushers-request@sysiphus.com.
The first step is to cd into the …/majordomo/lists directory and create the
initial list of recipients for the rock-pushers alias. This file can be empty or
you can add some initial email addresses to the list right now.
Next you ought to create a file describing the list and its purpose, plus any rules or
guidelines for the list and call that file rock-pushers.info. This info file
will be sent to every user when they subscribe and can be requested from the
Majordomo server by members of the lists (and outsiders if you permit it) at any
time. The info file is optional.

136

Creating a Mailing List (cont.)

• Step 3: Generate list config file
echo lists | mailx Majordomo@sysiphus.com

vi rock-pushers.config (see next slide)

• Step 4: Set file ownerships
chmod 644 rock-pushers*

chown majordomo rock-pushers*

chgrp daemon rock-pushers*

Next you need to generate and tweak the rock-pushers.config file. The
easiest way to generate the config file is to have Majordomo do it for you.
Unfortunately, Majordomo makes some bad default choices, IMHO. You might
want to keep a canonical config file around, copy it to the right file name, and
tweak it for each new list. We'll talk more about settings in the config file on the
next slide.
Before you leave the lists directory, be sure to verify that all files are owned by your
majordomo user and group. The files should be writable by the majordomo
user and world readable.

137

Config File Settings
admin_password default password based on listname

announcements "no" to turn off informational messages

approve_passwd default password based on listname

description fill in something here

index_access should be "list" just like get_access

message_footer some put [un]subscribe info here

message_fronter as above or perhaps disclaimer

message_headers can set "Errors-To:", etc.

moderate, moderator if appropriate

subject_prefix helps people filter list traffic

[un]subscribe_policy if you care (default is open+confirm)

welcome useful but turn off if too chatty

which_access set to "closed" to stop spammers

who_access ditto

There are dozens of settings in the Majordomo list config files. These are just some
of the more important ones.
The list passwords end up being a variant of the list name. You probably want to
choose better passwords.
Some list managers like to append a disclaimer header/footer and/or instructions on
how to unsubscribe from the list. You can also add a special string which is pre-
pended to every message subject line to allow people to filter mail more easily.
The default subscribe/unsubscribe policy is open+confirm which means that
anybody can subscribe to the list and when they do they have to send back a special
confirmation message. This is to avoid people subscribing a person they don't like
to every mailing list in the world as a denial of service attack. If you set the
subscribe policy to closed, then the owner of the list has to approve the
subscription.
The which command (find out which lists an address is subscribed to) and the who
command (find out who's on a given list) are often used by spammers to help
generate lists of addresses to pester. Shut off access to these commands-- even to
list members because spammers can always subscribe to a list.

138

Creating a Mailing List: Aliases
rock-pushers: "|/etc/mail/majordomo/wrapper

resend -l rock-pushers rock-pushers-outgoing"

rock-pushers-outgoing:
:include:/etc/mail/majordomo/lists/rock-pushers

rock-pushers-request:
"|/etc/mail/majordomo/wrapper majordomo

-l rock-pushers"

rock-pushers-approval: hal

owner-rock-pushers: hal

rock-pushers-owner: hal

The first alias invokes the Majordomo resend script to forward a message to the
recipients of a given list. The resend script enforces privacy features like only
list members being allowed to send email to the list, as well as appending
headers/footers, etc.
The resend script just fires the email to another alias which uses the standard
alias include directive to pull in the contents of the list file corresponding to the
rock-pushers list in the Majordomo directory. Spammers can completely
circumvent the resend script and send mail directly to the outgoing list and
there's nothing you can do about it. Furthermore, the outgoing alias appears in
the headers of messages sent via the resend script, so the alias name is in no way
hidden. A fix for this problem would involve hacking Majordomo.
We also need to set up a rock-pushers-request alias to allow people to
subscribe and unsubscribe from the list. Users can also do this for all lists via the
majordomo alias. The request alias has become a standard for list
management, however.
You need a real human owner of the list, and if you're moderating the list you need
a real human at the approval alias. Note that you really only need the owner-
rock-pushers alias (this is where Majordomo will direct list errors), but the
rock-pushers-owner form is another one of those de facto standards.

139

Writing Your Own Mail Progs

• Why?
• How They work
• Advice and sample code

If you're going to really be a mail administrator you need to be able to write
programs which handle mail. You'll often be called on to write autoresponders and
even more complicated programs.

140

Why Cover This?

• Because Sendmail can't do
everything for everybody

• Because it can make you look like a
serious mail expert

• Because most people get these
programs wrong, and it annoys me

Sendmail is an extremely complicated program with many features, but it can't do
everything. Writing programs to handle mail is a way of extending Sendmail's
feature set.
Besides, if you write a cool hack to process mail people will write songs and epics
to your fame and people of both sexes will throw themselves at your feet begging to
have your love child. Or you might get a bonus, though this is less likely.
Frankly, most people do these sorts of programs badly and end up spamming
mailing lists or getting into shouting matches with other autoresponders and causing
denial of service attacks. Even worse, badly coded mail programs can allow
attackers to get root access on your mail servers and/or destroy data.

141

Prog Aliases: 40,000 Foot View

Given an alias like
aliasname: "|/some/path/to/program arg1 arg2 …"

• program gets text of incoming
message on its standard input

• Any arguments are passed as normal
• Programs should exit with status 0

unless there's an error

Generally you trigger mail programs out of the aliases file. You can feed command
line arguments to the program in the alias file but these arguments are hard-coded
into each alias. The email message that triggers the alias is fed into the program on
it's standard input file descriptor.
Your mail programs should exit with status 0 unless there's a problem. If you exit
with an error message postmaster will get an email message like

Unknown mailer error: <error message>

142

Our Example

• Used to produce a helpful bounce
message when an employee leaves

• One optional argument which is the
individual's new mail address

• Want to return the original message
to the sender

• Don't want to generate bounce
messages to mailing lists, etc.

Our example is going to be the standard "this employee no longer works here" auto-
responder. You can invoke the alias with

john: \

"|/etc/mail/natabot john@elsewhere.com"

mary: "|/etc/mail/natabot"

The script takes an optional argument which is the user's new email address.
We want to return the senders original message back to them and we want to make
sure we don't spam mailing lists or respond to other auto-generated mail messages.
The complete source for the natabot program is included as the last of the
Appendices to this tutorial.

143

Getting the Return Address
Try to get return address from envelope From.

Quit silently if message is from MAILER-DAEMON.

Complain bitterly if we detect shell metachars.

#

$header[0] = <STDIN>;

($from) = $header[0] =~ /^From\s+(\S+)/;

exit(0) if (!length($from) ||

$from eq '<>' ||

$from =~ /mailer-daemon/i);

die "Hostile address: $from\n"

if ($from =~ /[\\|&;]/);

All SMTP-style email messages begin with a line that looks like
From <address> <date>

This is generally referred to as the envelope From header to distinguish it from the
From: header that appears elsewhere in the message.
Lesson #1 is that the envelope From header is the only address header you should
believe. Don't use any addresses from elsewhere in the message because they might
be forgeries or unintentional lies.
Lesson #2 is that the envelope From can also be forged and people can do nasty,
nasty things to you if you're not very careful (like embedding rm -rf commands
in mail addresses). Note that we look for dangerous shell metacharacters before
proceeding.
Lesson #3 is that you should never respond to messages from the user MAILER-
DAEMON (aka user <>). These are always auto-generated messages.

144

Sucking in Mail Headers
Scan through headers until blank line.

If we find a Precedence: header, obey it.

#

while (<STDIN>) {

last if (/^$/);

if (($prec) = /^Precedence:\s+(\S+)/) {

exit(0) if ($prec =~ /^(junk|list|bulk)$/);

}

push(@header, $_);

}

Lesson #4 is that the headers are separated from the body of the message by a single
blank line (no whitespace, no nothing). You stop processing the headers when you
hit this line and treat the rest of the message as an opaque blob of data.
Lesson #5 is that some folks put in a special Precedence: header and set the
value of the header to bulk or junk or list meaning this message was auto-
generated and should not be responded to by auto-responders. While the
Precedence: header is not an official standard, you may as well obey it if
somebody goes to the trouble of adding one.
Lesson #6 is that header lines look like

<header>:<whitespace><value>

or, in other words:
Precedence: bulk

<value> may be made up of several words separated by whitespace.
To be completely accurate, headers may continue on multiple lines as long as the
continuation lines begin with whitespace. You see this most commonly in
Received-by: headers

Received: (from smap@localhost)
by doe.deer-run.com (8.8.7/8.8.7) id RAA03062
for <hal@deer-run.com>; Mon, 26 Jan 1998...

145

Starting Sendmail Safely
Be paranoid of the contents of $from and start

Sendmail without invoking the shell. Make sure

we send our message from MAILER-DAEMON to avoid

autoresponders at remote site.

#

$pid = open(MAIL, "|-");

die "fork() failed: $!\n" unless (defined($pid));

unless ($pid) {

exec($sendmail, '-f', '<>', $from);

die "exec() failed: $!\n";

}

Lesson #7 is that you can't be too careful with that potentially forged envelope From
address. When you do the normal

open(MAIL, "|/usr/lib/sendmail $from") || die…

in Perl, Perl is actually invoking /bin/sh which then invokes Sendmail. If the
From address has embedded shell commands in it, you're in for a world of hurt.
The above gibberish actually fires off a Sendmail process without invoking the
shell. It's deep Perl magic, so don't freak if you don't understand what's going on.
The open(MAIL, "|-") line causes Perl to fork() (make a copy of the
current process). The standard input of the new process (generally referred to as the
child) is the other end of the MAIL file handle from the original process (the
parent). The parent process gets back the process ID of the child while the child
gets back 0 from the open()-- this is how the parent knows its the parent and the
child knows its the child.
The child process then calls exec() to fire up Sendmail. exec() replaces the
child Perl script with the Sendmail program but the Sendmail program inherits the
standard input (and all other file descriptors) from the original child Perl script.
The parent just proceeds on as normal as if it had done the standard open() call.

146

Creating Bounce Message
Create our own mail headers (including

Precedence:) and introductory chat.

#

print MAIL <<"EOMesg";

From: MAILER-DAEMON

To: $from

Precedence: junk

Subject: FYI -- Invalid Address

You have sent mail to an invalid address.

EOMesg

Lesson #8 is how to create email messages on the fly.
The parent process now starts composing a mail message and feeding it to the
Sendmail process. We create a few headers (including our own Precedence:
header) and then a blank line to separate the headers from the message body (that's
Lesson #4).

147

Creating Bounce Message (cont.)
Add new address if we have one.

Include headers read so far and rest of msg.

#

print MAIL "Use new address: $ARGV[0]\n"

if (length($ARGV[0]));

print MAIL "\nYour message returned below.\n\n";

print MAIL @header;

print MAIL "\n";

while (<STDIN>) { print MAIL; }

We add a line with the user's new address (if any). And then we include the original
message (headers first, then the rest of the message body text) to send back to the
sender of the original mail.
Lesson #9 is that it's always polite to return the original message sent to an auto-
responder. Not everybody configures their mail program to keep a copy of all
messages they send out (although they should!).

148

Finishing Up

Close the pipe to the Sendmail program.

Exit quietly.

#

close(MAIL);

exit(0);

Finally we close the MAIL file descriptor and this causes the Sendmail program to
fire off our response and exit. Then we exit ourselves with exit status 0 meaning
that everything is OK.
Lesson #10 is always clean up after yourself.
You knew there were going to be 10 lessons, didn't you?

149

Firewall Configuration

• Packet Filtering Basics
• Cisco Access Lists
• Examples!

Earlier in the tutorial we talked about configuring split-horizon DNS to work in a
firewalled environment, but we never really talked about how firewalls work and
how this affects DNS and Sendmail.
We're going to talk about packet filtering, which is the old fashioned way of doing
firewalls. Newer commercial firewall products still have a lot of features of old
style packet filters.

150

Well-Known Ports

• Each end of a network connection is
bound to a specific port

• Programs assigned to well-known ports:
SMTP (email): 25/tcp

telnet: 23/tcp

HTTP (Web): 80/tcp

• Packet filters stop traffic based on the
admin’s knowledge of well-known ports

Two machines communicate across a network by directing packets of information
at each other using unique IP addresses. However, any given machine may have
dozens of simultaneous network connections happening at any given moment. A
network port is a logical construct which allows a machine to keep multiple
connections separate.
There are 16 bits of network port numbers-- TCP ports are distinct from UDP ports.
Ports 0 through 1023 are reserved and not generally available to normal users.
Furthermore, RFC1700 documents certain “well-known” ports that have been
assigned to common network servers.
Well-known ports allow client software, e.g. the telnet program, to easily
contact the appropriate server at the remote host. It would be impractical for a
client to randomly probe the remote machine trying to find a server that will talk to
it.
However, since the well-known ports constrain certain servers to listen on a fixed
port number, an administrator can prevent access to a certain service by stopping
packets targeted at a given network port. This is where packet filters come in.

151

Logical Diagram: telnet

Client Server
port = 33987/tcp

port = 23/tcp

port = 33987/tcp port = 23/tcp

In general, network clients grab a random unused port above 1023 (remember, ports
lower than this are reserved). The client then constructs an initial packet with this
random port number and its own IP address in the source portion of the packet. The
destination is the IP address of the remote server and the well-known port
appropriate for the given service. In this case, we’re looking at a telnet client--
the well-known port for this service is 23/tcp.
The server sends back an acknowledgment packet using the source IP address and
port from the initial packet. Remember in this case the server uses its own IP
address and port 23/tcp in as the source address and the IP address and random
port selected by the client are in the destination fields.
The client now acknowledges the server’s acknowledgment and the session
proceeds.

152

Well-Known Ports (cont.)

DNS Filtering
– Server to server queries use 53/udp source and

destination

– Client to server queries use high-order port on
the client to 53/udp on the server

– Zone transfers require the secondary to make a
connection to 53/tcp on the server it is polling

When one DNS server talks to another, each one sources their packets with port
53/udp*. There is a provision in the RFC to allow servers to use TCP instead of
UDP to talk to each other, but you can operate fine without allowing this.
When your client asks for information from your local DNS server, the client uses a
high-order UDP port and the server responds from 53/udp. Note that your client
doesn’t have to talk to external servers in this way, and external clients don’t have
to talk to your server-- server to server queries suffice for regular DNS traffic.
For zone transfers to happen your remote secondaries have to be able to reach
through your firewall and talk to your DNS servers on 53/tcp. You should
explicitly list the IP addresses of your remote secondaries and not allow just
anybody to download your zone files, particularly if you don’t do split-horizon
DNS.

* One more word about server to server queries. BIND v8 has changed the default
behavior for server to server queries: now you local nameserver picks a random
port above 1023 for its connections. This breaks most existing firewalls. The

query-source address * port 53;

line in the options block of named.conf forces the old 53/udp for source
and destination behavior.

153

The Established Bit

TCP packets have an “established” bit:

– The first packet in a session has this bit off

– The first return packet and all other packets
have this bit turned on

– Stop new connections by dropping packets that
do not have this “established” bit on

TCP connections also have a notion of a session that is “in progress” as opposed to
the beginning of a new session. When a TCP client constructs the initial packet of a
network connection, it sets a bit in the packet header to “false” indicating that no
connection has been established yet. The first packet returned by the remote server
has this bit set to “true” indicating that the packet is now part of a session in
progress. All other packets sent by client and server also have this bit set to “true”.
Thus, if you want to prevent outsiders from initiating connections, you need to stop
packets that have this established bit set to false. The problem is that only
TCP-based services use this bit. This is why UDP-based services are hard to filter
and generally not allowed through firewalls-- there’s no way to tell whether this is a
packet that’s part of a session started by a potential hacker on the outside or a
legitimate user on the inside.
Note that the technical name for the established bit is the SYN ACK bit
(sometimes just the ACK bit)-- the moniker “established bit” derives from the
packet filtering syntax for Cisco routers as we will see later.

154

Logical Diagram: telnet

Client Server
port = 33987/tcp

port = 23/tcp
established = false

established = true

port = 33987/tcp established = true port = 23/tcp

Here’s our telnet example again. Note that the first packet from client to server
has the established bit set to false. All subsequent packets have the bit set to true.
If our packet filters can stop that first packet, then the client may never initiate a
telnet session with the server.
Note that it is possible for an experienced network programmer to generate that
same initial packet except that the established bit is set to “true”. However, the
server will have no record of an established session and will tear down the
connection upon receiving the first packet from the client.

155

So What is a Packet Filter?

• Packet filters forward or discard
datagrams based on header info:

• source address/port
• destination address/port
• protocol
• “established”

• Two approaches to packet filtering:
default deny-- anything not allowed is forbidden
default permit-- stop dangerous stuff, allow rest

Classical packet filters only operate on information in the IP header of a packet.
This limits their usefulness in certain circumstances. Things you can program into a
packet filter include:

• Source and destination addresses. This includes both specific host
addresses and network addresses using standard netmasking syntaxes. Most
packet filters also allow you to specify “match all addresses”.
• Source and destination ports, both specific ports and port ranges.
• The network protocol in use: TCP or UDP, ICMP, and special protocols
like GRE. Again, most packet filters allow you to specify “match all
protocols”.
• The status of the established (ACK) bit

Philosophically, there are two approaches to packet filtering. In the default deny
stance, the network administrator defines certain allowed services and then declares
that all other services are not allowed. This is a more secure position to hold since
new network protocols are being developed faster than any team of security experts
is prepared to evaluate them. The alternative approach, default permit, has the
network administrator disallowing obviously dangerous services (e.g. NFS and X
Windows traffic) but by default allowing all other network traffic to proceed. This
kind of filter can be used to stop obviously broken traffic from escaping from a
testing lab and/or protect two sections of a large organization at the point where
their networks connect.

156

Cisco Access Control Lists (ACLSs)

• ACLs made up of individual rules:
list identifier protocol destination address/port

access-list 101 permit tcp any gt 1024 172.16.0.0 0.0.255.255 eq 23

action dest addr/port

• Use “established” after any rule
access-list 102 permit tcp any any established

Typical access lists can contain dozens or even hundreds of individual access-list
statements. The largest access list your author has seen included over two thousand
individual rules.
Each access list begins with an identifying number which groups individual rules
into a single access list. Any number 100 or above may be used for Cisco extended
access lists (lower numbers are used for basic access lists which have less
functionality-- don’t bother).
Next comes the action. permit means allow matching packets, deny means drop
the offending packet and do not allow it to reach its destination.
Protocol can be tcp, udp, icmp, gre, etc. The protocol ip matches all
protocols.
Next comes a source address followed by a port specifier and then a destination
address and port specifier. Addresses can look like

172.16.0.0 0.0.255.255 network address
host 172.16.1.1 individual host
any match any addr

Port specifiers are generally a comparison operator (e.g. gt for greater than, lt for
less than, eq for equals) followed by a number. There is also a range operator for
specifying an inclusive range of ports. The port specifier is always optional.

157

ACL Pitfalls

• First match and exit behavior

• ACLs end with implicit “deny all”:
access-list xxx deny ip any any

• Can’t add rules in middle of an ACL--
destroy and re-create the whole thing

• Keep up to date on releases!

It is important to remember that the router stops processing access lists as soon as it
finds a rule which matches. Order is important! Getting rules out of order can
allow traffic that you thought was denied.
Cisco access lists are always in default deny mode. You can stop this behavior by
putting

access-list xxx permit ip any any

as the last explicit rule in any access list.
Cisco routers do not allow you to edit your access lists and insert rules in the
middle. You must destroy and recreate a new access list to insert rules. I
recommend putting each access list in a file with the following preamble:

no access-list 101
access-list 101 …
access-list 101…

You can then use configure network to read in this file as an atomic
operation and update your ACL.
Over the years, many bugs have been reported against Cisco’s packet filtering
functionality-- particularly related to handling of the established bit. Note that this
is a good reason to trust Cisco’s packet filtering-- we think we’ve gotten all of the
bugs out at this point. Still, make sure you keep up to date on the latest stable IOS
release for your platform.

158

Using ACLs

• ACLs are applied to a specific router
interface in a specific direction:

interface Serial0

ip access-group 101 in

…

• Use different packet filters to control
packets going in and out of network

Once you define a complete access list, it must be assigned to a given interface. A
given access list may be used by multiple interfaces and a given interface may use
multiple access lists.
Note that access lists are applied to an interface in a given direction. If the direction
is in then the access list is evaluated as packets are picked up off the wire, before
making it into the router. If the direction is out then the access list is evaluated as
the packets leave the router.
Most packet filtering routers use one access list to control packets coming from the
“interior” network heading for the outside world and another to stop packets coming
in from outside.
Note that inward packet filtering is a relatively new development (circa IOS version
10.0). In most cases, you can substitute an inbound filter on one interface with an
outbound filter on another interface.

159

Packet Filter-- Outside Router
! Inbound Access Control List

access-list 101 deny ip 172.16.0.0 0.0.255.255 any

access-list 101 deny ip 207.90.187.0 0.0.0.255 any

access-list 101 deny ip 127.0.0.0 0.255.255.255 any

!

access-list 101 permit tcp any 207.90.187.0 0.0.0.255 established

!

access-list 101 permit tcp any host 207.90.187.10 eq smtp

access-list 101 permit tcp host 192.168.1.1 host 207.90.187.10 eq domain

access-list 101 permit udp any host 207.90.187.10 eq domain

access-list 101 permit tcp any host 207.90.187.100 eq http

!

!

! Outbound Access Control list

access-list 102 permit tcp 207.90.187.0 0.0.0.255 any

access-list 102 permit udp 207.90.187.10 any eq domain

Now let’s configure some packet filtering routers. The configuration above is for
the Internet connected router on the “outside” of our DMZ. It’s purpose is to allow
outsiders to access the DNS and mail servers on the bastion and possibly other hosts
such as your Web server. There are both “inbound” (which should literally be
applied inbound on your ISP interface) and “outbound” (which can be applied “in”
on the inside interface or “out” on the outside interface) packet filters.
The first two lines of the inbound filter stop spoofed packets (you should also apply
a no ip source-route to the config for safety), including packets from the
loopback network. You may also want to block all RFC1918 traffic at this point
(instead of the 1918 network we’re using for this example). The first next four lines
permit access to DMZ services: email (SMTP), DNS zone transfers (from some
external secondary at 192.168.1.1), DNS queries, and the Web (HTTP). The last
two lines permit packets from established TCP sessions which happen on ports
above 1023. Actually the two rules are redundant, not only because recent Cisco
IOS versions allow you to combine the two rules, but also because people who try
to initialize connections with packets marked as established should only get a
reset from the remote server, but don’t take chances.
The two lines of outbound filters permit outbound TCP connections (which also has
the side-effect of letting your return packets from outside TCP connects from
getting out) and allow server to server DNS queries only.

160

Packet Filter-- Inside Router
! Inbound Access Control List

access-list 101 deny ip 172.16.2.0 0.0.0.255 any

access-list 101 deny ip 127.0.0.0 0.255.255.255 any

!

access-list 101 permit tcp 207.90.187.0 0.0.0.255 \

172.16.0.0 0.0.255.255 estabished

!

access-list 101 permit tcp host 207.90.187.10 172.16.0.0 0.0.255.255 eq smtp

access-list 101 permit udp host 207.90.187.10 172.16.0.0 0.0.255.255 eq domain

!

!

! Outbound Access Control list

access-list 102 permit tcp 172.16.0.0 0.0.255.255 207.90.187.0 0.0.0.255

!

access-list 102 permit udp 172.16.0.0 0.0.255.255 host 207.90.187.10 eq domain

access-list 102 permit udp 172.16.0.0 0.0.255.255 host 207.90.187.10 gt 1023

The packet filters for the inside router look fairly similar to the outside router filters.
Again the inbound filter first blocks spoofed packets. The filter also allows SMTP
and DNS communications between the inside and outside routers. Finally packets
from established sessions are permitted.
The outbound access list also permits traffic on 53/udp between the inside and
outside DNS servers, but also allows packets destined for UDP ports above 1023 to
escape. This rule has to be there so that the resolver on the bastion host can make
queries of the internal DNS server.
You will probably also need rules to allow your internal hosts to reach whatever
proxy servers you're using on your DMZ to allow internal people to get out to the
Web, etc.

161

Packet Filter-- Servers “Inside”

! Inbound Access Control List

access-list 101 deny ip 172.16.0.0 0.0.255.255 any

access-list 101 deny ip 127.0.0.0 0.255.255.255 any

!

access-list 101 permit tcp any 172.16.0.0 0.0.255.255 established

!

access-list 101 permit tcp any host 172.16.1.10 eq smtp

access-list 101 permit tcp host 192.168.1.1 host 172.16.1.10 eq domain

access-list 101 permit udp any host 172.16.1.10 eq domain

!

!

! Outbound Access Control list

access-list 102 permit tcp 172.16.0.0 0.0.255.255 any

access-list 102 permit udp 172.16.1.10 any eq domain

This is an example of an access list for the case when you don’t have a DMZ
network, just a single choke router between you and the Internet. Obviously, you
would need real addresses inside instead of the RFC1918 addresses we're using
here.
Again the inbound filter starts with anti-spoofing rules. Then we allow anybody to
reach inward to our SMTP server (which should be running SMAP). The next lines
permit zone transfers from a specific internal secondary and DNS server queries
from external DNS servers. Finally we allow packets from established sessions.
Outbound we want to allow TCP packets for return connections and to allow
insiders to use the Internet. We also allow server-to-server DNS queries to happen
and allow our DNS responses to get out to the outside world.

162

That's All, Folks!

Any final questions?
Please fill out your surveys!

This space intentionally left blank.

