

Simple Unix Tricks: Detecting Break-Ins

Hal Pomeranz Deer Run Associates

Who Am I?

- Independent security consultant
- SANS Institute Senior Faculty
- Technical Editor for Sys Admin
- Unix Technical Advisor for the Center for Internet Security

Generally speaking, a guy who probably spends way too much time with Unix...

What's In This Course?

- Simple techniques for determining if your Unix system has been broken into
- Uses freely available resources and tools:
 - SANS' "Intrusion Discovery Cheat Sheet"
 - chkrootkit
 - AIDE
- This is NOT a course on digital forensics, though some techniques may overlap

What's Your Job?

ASK QUESTIONS!

SANS' "Cheat Sheet"

A simple one-page guide to help system administrators look for telltale signs:

- Strange processes
- Unexpected files, file modifications
- Suspicious network usage
- New cron jobs
- New accounts
- Suspicious log entries
- Goal is to use only tools provided with the (Linux) operating system

Important Caveat

- After a root compromise, OS utilities may not be trustworthy due to "rootkit" install
- True forensic investigation is always done with tools brought in from outside:
 - Pre-packaged on CD-ROM
 - Mounted via the network?
- Still, you'd be surprised how many attackers don't bother to cover their tracks in this way

Getting Process Info

- Sometimes simplest is best: ps -ef # Linux and SYSV ps auxww # BSD
- Look for processes you don't recognize
- Helps if you're already familiar with the normal process list for the system
- Also helps if you've already minimized the number of services on the system

More Hints From the Process Table

	•	•	•	
# ps	-ef			
USER	PID	STAT	START	TIME COMMAND
root	• • •	S	Apr15	0:04 init
root	• • •	SW	Apr15	0:00 [kflushd]
root	• • •	S	Apr15	0:00 gpm -t ps/2
xfs	• • •	S	Apr15	0:00 xfs -droppriv -daemon
root	• • •	S	Apr23	0:00 syslogd -m 0
root	• • •	S	Apr23	0:00 klogd
root	• • •	S	Apr23	0:00 crond
root	• • •	S	Apr23	0:00 inetd
root	1584	S	Apr23	0:00 (nfsiod)
:		:	\square	: : :
root	• • •	S	Apr24	0:00 /sbin/mingetty tty6
root	• • •	S	Apr24	0:00 /usr/bin/kdm -nodaemon
root	• • •	S	Apr24	0:01 /etc/X11/X -auth /usr/
root	•••	S	12:33	0:00 -sh
root	•••	R	12:41	0:00 ps -auxww

lsof is Also Helpful Here

# lsof -p 1584						
COMMAND PID USER	SIZE NODE NAME					
sh 1584 root	4096 123 /dev/ /lrk5					
sh 1584 root	4096 2 /					
sh 1584 root	373176 96198 /bin/bash					
sh 1584 root	344890 208421 /lib/ld-2.1.2.so					
sh 1584 root	15001 208480 /lib/libtermcap.so.2.0.8					
sh 1584 root	4118299 208428 /lib/libc-2.1.2.so					
sh 1584 root	247348 208459 /lib/libnss_files-2.1.2.so					
sh 1584 root	253826 208465 /lib/libnss_nisplus-2.1.2.so					
sh 1584 root	372604 208441 /lib/libnsl-2.1.2.so					
sh 1584 root	254027 208463 /lib/libnss_nis-2.1.2.so					
sh 1584 root	1577 TCP bobo:12497->badguy:1523 (ESTABLISHE	D)				
sh 1584 root	1577 TCP bobo:12497->badguy:1523 (ESTABLISHE	D)				
sh 1584 root	1577 TCP bobo:12497->badguy:1523 (ESTABLISHE	D)				
sh 1584 root	1576 TCP *:12497 (LISTEN)					
sh 1584 root	1577 TCP bobo:12497->badguy:1523 (ESTABLISHE	D)				

Examining the File System

If it's Unix, you're going to use find:
find <startdir> <condition> <action>

In most cases you'll want to search the entire file system, so <*startdir>* is "/"
 The <*action>* is most often "-print"

Let's look at some useful examples...

Wacky File Names

- Find strange file and directory names commonly used by attackers: find / -name ' ' -print find / -name '...' -print find / -name '.* *' -print
- Surprising that attackers continue to use these well-documented directory names...

Set-UID and Set-GID Files

New or modified set-UID and set-GID files should be a concern:

find / \(-perm -4000 -o -perm -2000 \) \
 -type f -ls >setidfiles

- Run this command *before* you put the system into production, and save the result
- Audit the system by using diff to compare the current output with the saved output

Other Interesting Searches

- Large files (> 10MB): find / -size +1000000c -print
- Recently modified files (< 1 week): find / -mtime -7 -print
- Not all output is suspicious— run commands regularly to learn what's "normal"

Using the Package Manager

- Software package manager can be used to audit operating system integrity:
 rpm -Va # Redhat/Mandrake
- Other systems have equivalent functionality (Solaris: pkgchk, HP-UX: swverify, etc.)
- Assumes attacker hasn't tampered with package management software or database

Suspicious Network Activity

- Check the output of netstat and lsof: netstat -anp # -p only for Linux lsof -i
- Also check for new entries in inetd.conf
- Again, it helps if you're already familiar with what's "normal" for your system
- Eliminating unused network services reduces vulnerabilities and helps auditing

Check for "Promiscuous Mode"

- Network interfaces in "promiscuous mode" means a packet sniffer is running
- Standard Unix command for checking interface status is ifconfig
- Linux ifconfig doesn't accurately report PROMISC mode (use "ip link" instead)
- Solaris ifconfig is also broken—use ifstatus tool (URL at end of course)

New Cron Jobs


- Look for new cron entries, particularly for the root user: crontab -u root -1
- Probably should also check the integrity of the cron daemon itself:
 - Via the OS package manager
 - Comparing MD5 checksum from other system
 - Against vendor checksum database

Suspicious Accounts

- Look for extra UID 0 accounts: awk -F: '(\$3 == 0) { print \$1 }' /etc/passwd
- Accounts with no password set: logins -p # not available on all Unix systems awk -F: '(\$2 == "") { print \$1 }' /etc/shadow
- May also want to check that "system" accounts are still "blocked"

Check Your Logs!

- Failed logins and failed su attempts
- Network connections from unknown or suspicious network ranges
- Interfaces go into promiscuous mode (Linux)
- Strange messages from RPC-based services with lots of non-printable characters
- Bizarre or long addresses in Sendmail logsLarge numbers of errors in web server logs

What is It?

- A simple shell script that looks for "signatures" of common rootkits
- Comes with some helper programs with more advanced capabilities
- Able to detect even some kernel rootkits
- Ported to many Unix variants, but clearly designed primarily for Linux and FreeBSD

Same Problem Again

- As with manual investigation, chkrootkit relies on certain shell utilities
- Attacker may have replaced OS utilities with Trojan-ed versions to spoof admin
- chkrootkit options:
 - Alternate \$PATH: chkrootkit -p <dir>:...
 - Alternate mount: chkrootkit -r /mnt

Simple chkrootkit Checks (1)

- chkrootkit first runs strings on several dozen OS binaries
- Looks for strings that are present in known Trojan versions
- Obviously will not recognize Trojans that have not yet been discovered/categorized
- "Expert mode" (chkrootkit -x) shows full strings output for admin review

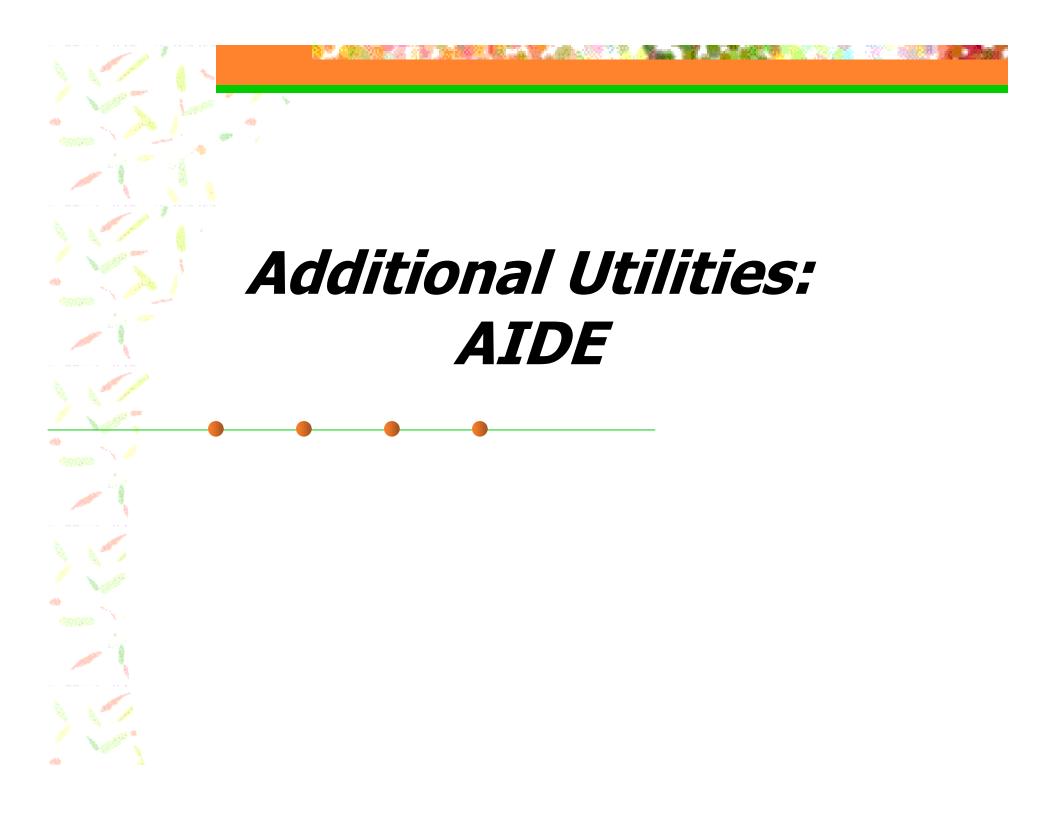
Simple chrootkit Checks (2)

- chkrootkit looks for files or file changes created by well-known rootkits
 - "aliens" check covers many signatures
 - Specific functions for other rootkits
 - **chkrootkit** -1 lists available checks
- Select individual checks on command line (default is to run all checks): chkrootkit aliens scalper slapper

"bindshell" Check

- Compares the output of "netstat -an" against a list of common back-door ports
- False-positives are common due to:
 - Hosts running Portsentry/Klaxon/Wrappers
 - Local services listening on odd ports
- Again, know thy systems!

Looking for Kernel Rootkits


- Some kernel-level rootkits show up due to strings found in /proc/ksyms
- May be able to find hidden processes by exhaustive traversal of /proc
- Possibly detect hidden directories due to parent directory link count discrepancies

Groveling Through /proc

- Kernel rootkits hide /proc/ <pid> dirs in normal listing, but directories still "exist"
- Trivial algorithm (chkproc):
 - First get directory listing from /proc
 - Now run through entire PID range, attempting to open /proc/ <pid>
- Can generate false positives when processes started during chkproc run

Directory Link Counts

- The link count on a directory should be two plus the number of sub-directories:
 - Count normal directory entry plus "." link
 - Each subdir has "..." link that points to parent
- Kernel rootkits often "hide" a directory but forget to reduce parent directory link count
- chkdirs program walks entire file system looking for link count discrepancies
- Not part of standard checks— run manually

How It Works – Overview

- Create config file listing critical files and directories to watch
- Generate initial file/checksum database for this list of files
- Periodically re-run AIDE to compare current file/directory info to database
- Report discrepancies

What Problem Does It Solve?

- Lets you know *exactly* which files have been changed on your system
- This is indispensable information after a security incident
- However, the greatest recurring value may be alerting you to mistakes by local admins

The Problem

- An attacker who roots your box can modify your AIDE binary/database
- Solutions include:
 - Binary and database on CD-ROM
 - Read-only NFS from central, protected host
 - Remote checks via SSH from central host
 - Read-write local access with periodic external verification

What About Tripwire?

- Tripwire was the first integrity checking tool for Unix systems
- Originally a grad student project by Gene Kim, and distributed freely
- Tripwire is now a commercial product
- Older version for Linux was released under the GPL, also ported to FreeBSD

AIDE Installation Notes

- Includes standard "configure" script
- However, insists on you already having a number of other Open Source tools:
 - GNU bison, flex, and make
 - Zlib data compression library
 mhash library (checksum algorithms)
- Source tweaks may be required for non-mainstream operating systems

aide.conf - Per File Checks

P	Permissions/mode bits
i	Inode number
n	Number of links
u	File owner (user)
g	Group owner
s/b	File size in bytes/blocks
S	Checks that file is growing
a/m/c	Access/modify/inode timestamps

aide.conf - Checksums

- Checksums include md5, sha1, tiger, rmd160, hava1, gost, and crc32
- Use multiple checksums on "critical" files for maximum security
- Use single checksum on normal files to reduce system impact of audit

aide.conf - File Entries

Specify file regexp and list of parameters: /usr/bin/su\$ p+i+n+u+g+s+m+c+md5

Common sets have pre-defined macros:

- R p+i+n+u+g+s+m+c+md5 ("read-only")
- L p+i+n+u+g ("log file")
- > p+i+n+u+g+S ("growing log file")
- E Empty set ("ignore *everything*")

aide.conf - Directories

By default, AIDE recursively descends through directory trees, catching all entries

Use !/= to modify this behavior:

=/usr\$ R # check /usr itself, # but don't recurse

/etc/namedb R # watch zone files
!/etc/namedb/slave # but not slave files

Partial aide.conf File

database=file:/var/aide/aide.db
database_out=file:/var/aide/aide.db.new
verbose=20
H = p+i+n+u+g+s+b+m+c+md5+sha1+rmd160

#where DB lives
#put new DB here
0-255
#"heavy" auditing

/dev	L	<pre>#watch /dev entries</pre>
!/dev/[pt]typ[0-9a-f]\$		<pre>#these change a lot</pre>
/root	Н	#critical area
/root/.ssh/known_hosts\$	>	#this file changes
=/etc\$	L	#critical directory
/etc/.*	R+shal	<pre>#watch contents</pre>
<pre>!/etc/ntp.drift\$</pre>		#ignore this file

Files/Directories to Watch

- Significant" directories like /, /usr, /var, /dev, /tmp, and /var/tmp
- Dot files in root's home directory (but beware files generated by SSH)
- /etc (but beware derived files in /etc)
- Crontab files and directories
- Kernel and boot loader (if any)

Also Watch bin & lib Dirs

- Monitor all bin and lib dirs on the system (including /opt and /usr/local)
- Again, use single checksum except on "critical" files to improve scan speed
- "Critical" files include:
 - System shells (sh, csh, ksh, bash, ...)
 - Daemons (inetd, syslogd, sshd, ...)
 - Authentication (login, su, passwd, ...)
 - Forensic tools (ls, ps, netstat, ifconfig, ...)

Don't Forget "Content" Dirs!

Web server doc trees and CGI bins

- Anonymous FTP areas
- DNS zone files
- NIS maps (if not in kept /etc)

The Problem With Log Files

- Monitoring log files might seem like an obviously good idea
- The problem is that log files get moved, "rotated", and archived
- Generally, it's only a good idea to watch stationary log files like utmp/wtmp

Using AIDE

Generating your database:

aide --config=/var/aide/aide.conf --init
 [... some informational messages not shown ...]
mv /var/aide/aide.db.new /var/aide/aide.db

Running a check:

aide --config=/var/aide/aide.conf --check

AIDE, version 0.10

All files match AIDE database. Looks okay!

Aide Reports a Change...

```
# /var/aide/aide --config=/var/aide/aide.conf
AIDE found differences between database and file system !!
Start timestamp: 2004-03-21 16:14:28
Summary:
Total number of files=20396,added files=0,removed files=0,changed...
Changed files:
changed:/etc/mail/statistics
changed:/etc/security/audit data
Detailed information about changes:
File: /etc/mail/statistics
          : 2004-03-21 13:47:55
 Mtime
                                      , 2004-03-21 16:02:57
 Ctime
          : 2004-03-21 13:47:55
                                      , 2004-03-21 16:02:57
 MD5
          : Vhbdo2DxMxuwRZJE9+610A==
                                      , rc5K7XRiUfKJ0cET3jATYq==
                                      , O20pi+SSSmAej/PraA/vwgJa...
           : 8JkRx12+8u6/RrxevzPraG...
 SHA1
File: /etc/security/audit data
 Mtime : 2004-03-21 13:00:00
                                      , 2004-03-21 16:00:00
 Ctime
           : 2004-03-21 13:00:00
                                       , 2004-03-21 16:00:00
```

[...]

Thoughts on Automation

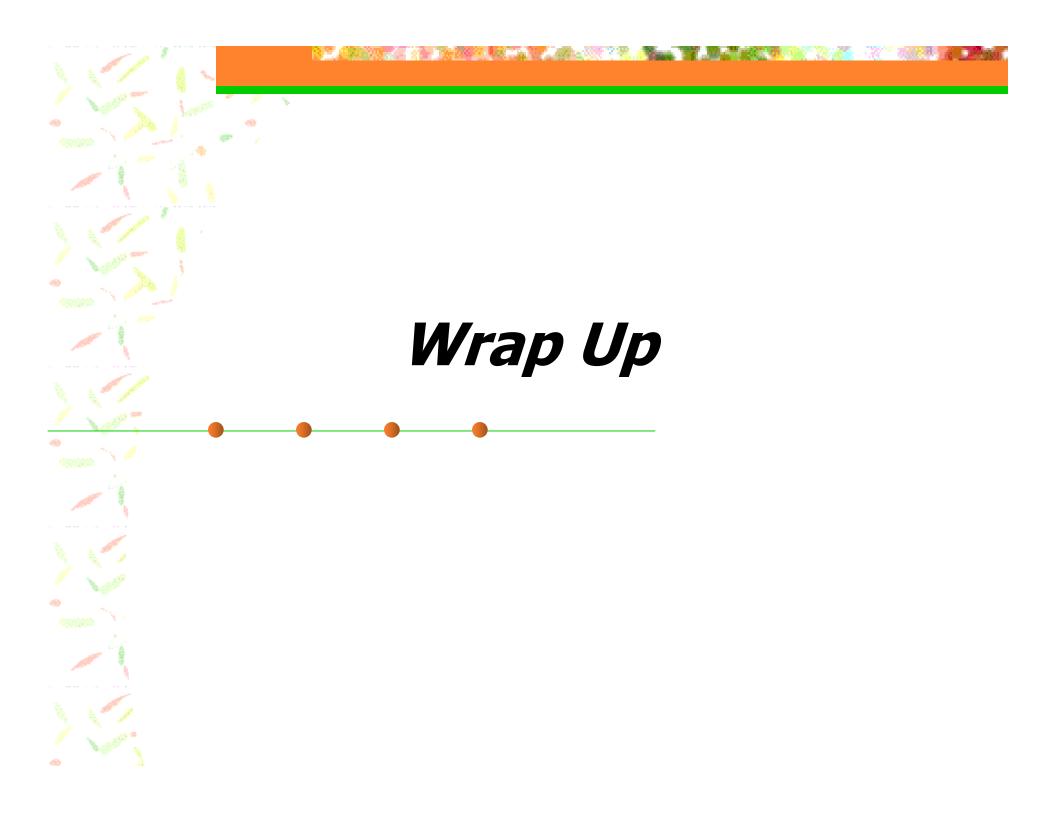
- You want to run AIDE from cron
- You don't want to get spammed if everything is OK
- Simple script (next slide) can differentiate normal output from real warnings
- May want to run periodic manual audits just to make sure things are working

Here's That Script...

#!/bin/sh

```
TEMPFILE=/var/aide/.out$$
```

```
if [ ! "`grep '### All files match' $TEMPFILE`" ]
then
```


```
cat $TEMPFILE
```

fi

rm \$TEMPFILE

Updating Databases

- Files will change during the lifetime of a system and database must be updated
- Use "aide --update" to run a scan and simultaneously produce new database
- Be sure to carefully check scan report before overwriting old database!

That's All Folks!

Any final questions/comments?
Please fill out your eval forms!
Thanks for listening!

Plenty of useful URLs to follow...

Misc References

- SANS "Intrusion Discovery Cheat Sheet": http://www.sans.org/score/checklists/ID_Linux.pdf
- Chkrootkit home page (good links!): http://www.chkrootkit.com
- SANS "Reading Room" http://www.sans.org/rr/
- CERT/CC "Tech Tips" http://www.cert.org/tech_tips/

AIDE Info

Homepage (w/ docs), download site: http://www.cs.tut.fi/~rammer/aide.html http://sourceforge.net/projects/aide

Sample config files: http://www.deer-run.com/~hal/aide/

 Additional software needed: GNU Software – http://www.gnu.org/ Zlib – ftp://ftp.info-zip.org/pub/infozip/zlib/ Mhash – http://mhash.sourceforge.net/

Other Software

ifstatus

ftp://ftp.cerias.purdue.edu/pub/tools/unix/sysutils/ifstatus

lsof

ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/

Tripwire (commercial version) http://www.tripwire.com

Tripwire (Open Source for Linux/FreeBSD) http://www.tripwire.org