EXT3 File Recovery
via Indirect Blocks

Hal Pomeranz

Deer Run Associates

EANDIANT®

Agenda

* EXT File System Review

* Recovering Deleted Data
— Issues with Traditional File Carving Tools
— How Indirect Blocks Can Be Leveraged
— Tools to Recover Data

* Wrap Up
— Looking Ahead to EXT4

EXT File System Review

EXT File System Layers
..... |: .|e|\|ame|_ayer MEtadataLayer DataLayer
 (Directory Files) | (Index Nodes) | | (Blocks)

| init L i | Size = 23640
— |i iluD=0,GID=0

| getty

halt Link Count =1

>

>

route Perms = -rwxr-xr-x >
P R

>

ifconfig MAC Timestamps

--

Metadata Layer

* |[nodes store typical file metadata:
— File permissions
— Ownership info
— File size, number of links, etc

— MAC timestamps

* |[node also has fixed number of pointers to the
file content (data blocks)...

Direct Blocks (12)
[File sizes to 48K]

Indirect Blocks (1024)
[4M storage]

Va

//

5 T

Inode Double Indirect (1M)

[4GB storage]

1\

TR W ao®©®oo N0 BwWN =

Treble Indirect Pointer
[Up to 1G blocks, 4TB storage]

A Word About Data Blocks

Data blocks (and inodes) organized into logical
"Block Groups" (typically 32K blocks/group)

Contents of a directory will be allocated to the
same block group

Blocks in a file will be allocated consecutively,
if possible, using "first-available" algorithm

Slack space is null-filled

File Deletion in EXT

Data vs. Metadata

* Data blocks are simply marked as unallocated

— Content remains on disk until blocks re-used

* Treatment of metadata varies by EXT version
— EXT2: Simply mark inode as unallocated
(File recovery is trivial)
— EXT3: Zeroes block pointers, marks as unallocated

(File recovery? Ummmm....)

Quick Example: EXT2 Recovery

1. Examine unallocated inodes with ils

$ ils ext2-simple.img
st inolst alloc|..|st sizel|st blockO|st blockl
17131£1]...]011075310

1714 | £].. 8705|8706 ..

2. Use icat to recover original file content

$ icat ext2-simple.img 1714
This 1s a deleted file
This 1s a deleted file
This 1s a deleted file

So What About EXT3?

* Traditional techniques rely on "file carving":
— Determine a "signature" for start of file

— Start grabbing blocks until end of file "signature”
or until size limit is reached

Problems w/ Carving EXT3

 Many Unix file types have no viable sighatures
* Indirect blocks (metadata) in data runs
* File fragmentation, particularly on larger files

Leveraging Indirect Blocks

Pertinent Questions

* Why are we just ighoring indirect block data?
* Couldn't we use it do recover file content?
* Can we rebuild the entire original file?

Looking At an Indirect Block

0 5da0300 c6da0300 c7da0300
16 c9da0300 cada0300 cbda0300
32 ccda0308 ¢cdda0300 ceda0300 c£da0300
48 d0da0300 ¥q1da0300 d2da0300 d3da0300
64 d4da0300 d58a0300 deda0300 d7da0300
80 d8da0300 d9daQ300 dada0300 dbda0300

4048 b8de0300 b9de030\ bade0300 bbde0300
40604 bcde0300 bdde0300 Bede0300

4080 c0de0300 c1de0300 c28¢0308_c3de0300

ST T
A LN . AINT ||
[\ /\

252599
252611 252612 253635 253636

Simple File Recovery Strategy

-ind beginning of file via signature
Does the 13t block look like an indirect block?

f so, dump associated data blocks

f last block address is not null, keep going

We can do this manually...

There's an App for That...

sigfind -b 4096 1F8B0800 ext3-example.img
size: 4096 Offset:

Rlock

Block:
Block:
Block:
Block:

251904
252096
252293
252599

(

(
(
(

-)

+192)
+197)
+300)

0

Signature:

1F8B080O0

frib ext3-example.img 252599 >recovered.gz

tar ztf recovered.gz

perl-5.10.1/patchlevel.h
perl-5.10.1/Configure

i

Don't Have a File Signature?

* |Indirect blocks have a sighature:
— Any block N whose first 4-bytes == N+1

e Use relative location of indirect blocks to put
file contents back together

* Beginning of file data will (hopefully) be the
12 blocks before the first indirect block

There's an App for That Too...

£ib ext3-example.img Use -I option and specify
Indirect block # as argument

252611 3436

. «—
frib -I dblks ext3-example.img 252611>indblks

1ls -1lh *blks

-rw—-r—-—-r—— 1 hal hal 48K 2011-01-16 08:09 dblks
-rw—-r—-—-r—— 1 hal hal 14M 2011-01-16 08:09 1indblks

cat dblks indblks >recovered2.gz

1ls -1 recovered*.gz

-rw-r—-—-r—— 1 hal hal 14118912 2011-01.. recovered?2.gz
-rw—-r—-—-r—— 1 hal hal 14118912 2011-01.. recovered.gz
diff recovered*.gz

Fragmentation

* Not a problem if fragmentation occurs within
data runs from indirect blocks

* Real problem if fragmented in first 13 blocks:
— Start with signature, can't find first indirect block
— Start from indirect block, can't find true file start

All is Not (Necessarily) Lost

* Use fib/frib to recover the majority of the file
using indirect blocks strategy

 May be able to use file content signatures to
piece together the first 12 blocks

* Reduce your search space:
— Data blocks will tend to be in same block group

— "First available" algorithm means start of file will
usually be found in lower block numbers

Wrapping Up

Looking Ahead: EXT4

These techniques will not work with EXT4

EXT4 uses extents (start block + run len) rather
than inefficient pointer strategy of EXT2/3

Extents are zeroed when inode is deallocated—
back to file carving again

Good news:
— "Delayed allocation" == less fragmentation
— No more indirect block meta-data in data runs

EXT3 will be with us for a long time...

That's It!

* Any final questions?
* Thanks for listening!

Hal Pomeranz | hal@deer-run.com

Consultant, Mandiant | hal.pomeranz@mandiant.com

Faculty Fellow, SANS Institute | hal@sans.org

Tools and further detail at blog.mandiant.com

EANDIANT®

