
EXT3 File Recovery

via Indirect Blocksvia Indirect Blocks

Hal Pomeranz

Deer Run Associates

Agenda

• EXT File System Review

• Recovering Deleted Data

– Issues with Traditional File Carving Tools

– How Indirect Blocks Can Be Leveraged– How Indirect Blocks Can Be Leveraged

– Tools to Recover Data

• Wrap Up

– Looking Ahead to EXT4

EXT File System Review

EXT File System Layers

File Name Layer
(Directory Files)

Metadata Layer
(Index Nodes)

Data Layer
(Blocks)

init

getty

route

Size = 23640

UID = 0, GID = 0

Perms = -rwxr-xr-x

File System Layer (Superblock, Group Desc Tables)

route

halt

ifconfig

Perms = -rwxr-xr-x

Link Count = 1

MAC Timestamps

Metadata Layer

• Inodes store typical file metadata:

– File permissions

– Ownership info

– File size, number of links, etc– File size, number of links, etc

– MAC timestamps

• Inode also has fixed number of pointers to the

file content (data blocks)…

A Word About Data Blocks

• Data blocks (and inodes) organized into logical

"Block Groups" (typically 32K blocks/group)

• Contents of a directory will be allocated to the

same block groupsame block group

• Blocks in a file will be allocated consecutively,

if possible, using "first-available" algorithm

• Slack space is null-filled

File Deletion in EXT

Data vs. Metadata

• Data blocks are simply marked as unallocated

– Content remains on disk until blocks re-used

• Treatment of metadata varies by EXT version• Treatment of metadata varies by EXT version

– EXT2: Simply mark inode as unallocated

(File recovery is trivial)

– EXT3: Zeroes block pointers, marks as unallocated

(File recovery? Ummmm….)

Quick Example: EXT2 Recovery

1. Examine unallocated inodes with ils

$ ils ext2-simple.img

st_ino|st_alloc|…|st_size|st_block0|st_block1

1713|f|…|0|10753|0

1714|f|…|2300|8705|8706
File size is non-zero

1714|f|…|2300|8705|8706

2. Use icat to recover original file content

$ icat ext2-simple.img 1714

This is a deleted file

This is a deleted file

This is a deleted file

…

File size is non-zero

So What About EXT3?

• Traditional techniques rely on "file carving":

– Determine a "signature" for start of file

– Start grabbing blocks until end of file "signature"

or until size limit is reachedor until size limit is reached

Problems w/ Carving EXT3

• Many Unix file types have no viable signatures

• Indirect blocks (metadata) in data runs

• File fragmentation, particularly on larger files

Leveraging Indirect Blocks

Pertinent Questions

• Why are we just ignoring indirect block data?

• Couldn't we use it do recover file content?

• Can we rebuild the entire original file?

Looking At an Indirect Block

blkcat -h ext3-example.img 252611

0 c4da0300 c5da0300 c6da0300 c7da0300

16 c8da0300 c9da0300 cada0300 cbda0300

32 ccda0300 cdda0300 ceda0300 cfda0300

48 d0da0300 d1da0300 d2da0300 d3da0300

64 d4da0300 d5da0300 d6da0300 d7da0300

80 d8da0300 d9da0300 dada0300 dbda0300 80 d8da0300 d9da0300 dada0300 dbda0300

...

4048 b8de0300 b9de0300 bade0300 bbde0300

4064 bcde0300 bdde0300 bede0300 bfde0300

4080 c0de0300 c1de0300 c2de0300 c3de0300

252599
252611 252612 253635 253636

Simple File Recovery Strategy

• Find beginning of file via signature

• Does the 13th block look like an indirect block?

• If so, dump associated data blocks

• If last block address is not null, keep going• If last block address is not null, keep going

We can do this manually…

There's an App for That…

sigfind -b 4096 1F8B0800 ext3-example.img

Block size: 4096 Offset: 0 Signature: 1F8B0800

Block: 251904 (-)

Block: 252096 (+192)

Block: 252293 (+197)

Block: 252599 (+306)

…

frib ext3-example.img 252599 >recovered.gz

tar ztf recovered.gz

…

perl-5.10.1/patchlevel.h

perl-5.10.1/Configure

#

Don't Have a File Signature?

• Indirect blocks have a signature:

– Any block N whose first 4-bytes == N+1

• Use relative location of indirect blocks to put

file contents back togetherfile contents back together

• Beginning of file data will (hopefully) be the

12 blocks before the first indirect block

There's an App for That Too…

fib ext3-example.img

…

252611 3436

…

frib -I dblks ext3-example.img 252611>indblks

ls -lh *blks

Use -I option and specify

Indirect block # as argument

ls -lh *blks

-rw-r--r-- 1 hal hal 48K 2011-01-16 08:09 dblks

-rw-r--r-- 1 hal hal 14M 2011-01-16 08:09 indblks

cat dblks indblks >recovered2.gz

ls -l recovered*.gz

-rw-r--r-- 1 hal hal 14118912 2011-01… recovered2.gz

-rw-r--r-- 1 hal hal 14118912 2011-01… recovered.gz

diff recovered*.gz

Fragmentation

• Not a problem if fragmentation occurs within

data runs from indirect blocks

• Real problem if fragmented in first 13 blocks:• Real problem if fragmented in first 13 blocks:

– Start with signature, can't find first indirect block

– Start from indirect block, can't find true file start

All is Not (Necessarily) Lost

• Use fib/frib to recover the majority of the file

using indirect blocks strategy

• May be able to use file content signatures to

piece together the first 12 blockspiece together the first 12 blocks

• Reduce your search space:

– Data blocks will tend to be in same block group

– "First available" algorithm means start of file will

usually be found in lower block numbers

Wrapping Up

Looking Ahead: EXT4

• These techniques will not work with EXT4

• EXT4 uses extents (start block + run len) rather

than inefficient pointer strategy of EXT2/3

• Extents are zeroed when inode is deallocated–• Extents are zeroed when inode is deallocated–

back to file carving again

• Good news:

– "Delayed allocation" == less fragmentation

– No more indirect block meta-data in data runs

EXT3 will be with us for a long time…

That's It!

• Any final questions?

• Thanks for listening!

Hal Pomeranz hal@deer-run.com

Tools and further detail at blog.mandiant.com

Hal Pomeranz hal@deer-run.com

Consultant, Mandiant hal.pomeranz@mandiant.com

Faculty Fellow, SANS Institute hal@sans.org

