
How They Do It:
Unix Hacking 101

Hal Pomeranz
Deer Run Associates

Who Am I?

Independent security consultant
SANS Institute Senior Faculty
Technical Editor for Sys Admin
Unix Technical Advisor for the Center
for Internet Security

Generally speaking, a guy who probably
spends way too much time with Unix…

What's In This Course?

Overview of common techniques for
breaking into Unix systems

Detailed coverage of stack smashing
(buffer overflow) attacks and defenses

A look at what happens after a
successful break-in: rootkit installation

Live demos, prevention techniques, etc.

What's Your Job?

ASK QUESTIONS!

Overview

Hierarchy of Vulnerabilities

Physical access

Captured (or weak/default) password

Deliberate malware

Software vulnerabilities (including race
conditions, buffer overflows, et al)

Subverted "trust relationships" (.rhosts
files, X Windows authentication, etc.)

Session hijacking

Physical Access = root

Single-user boot

Boot off of OS Media

Corrupt root file system

Steal the disk drives!

Keep those critical servers locked up!

Corrupt Root File System

Repeatedly power-cycle system

Root file system will eventually become
inconsistent– manual fsck required

System will come up at root shell
without asking for a password

Attacker can fsck file system and
change root password, etc.

Weak Passwords

We know reusable passwords are bad

Better authentication systems are
expensive to implement

Common solutions are far from ideal:
Account expiration, password change
"Cracking" passwords and harassing users

Unfortunately, many Unix systems lack
ability to force "strong" passwords

Deliberate Malware

Common Unix vectors:
Trojan software distributions (often after
break-ins at software archive servers)
Trap-doors in web programming libraries

Critical to verify software signature
(with PGP, if possible) before installing

Consider testing on isolated network
before production deployment

File System Race Conditions

Typically caused by programs writing to
directories with "unsafe" permissions

Compounded by programs which
choose "predictable" file names

Attacker creates a symlink which causes
program to modify an unexpected file

Window of vulnerability can be very
small– perhaps a few CPU cycles

1992 SunOS /bin/mail Hole

/bin/mail called by Sendmail to
deliver mail into /var/spool/mail

/bin/mail checks mail file to see if
it's a symlink and then opens file

Between the check and the open,
attacker creates a symlink to /.rhosts

Other Predictable File Names

mktemp() generates temporary file
names based on template string

Attacker can usually predict next file name

Attacker makes link after mktemp() call
and before open()

Use mkstemp() instead or at least call
open() with O_CREAT|O_EXCL set

Set-UID Script Race Condition

Make a symlink to set-UID script

Execute symlink

While kernel is loading interpreter,
re-point symlink to root shell script

New script executes with set-UID
permissions from old script!

Trust Problems – .rhosts

This mechanism replaces password
authentication with IP/host-based auth:

IP addresses can be spoofed
DNS can be corrupted
Root privs on other hosts can be exploited

Attacker can often "reverse" .rhosts
files and find other machines to break

X Windows Exploits

Attacker controlling your display can:
Get remote video output
Capture all keystrokes (read passwords)

"All or nothing" access model is a real
problem here

Session Hijacking

Attacker "takes over" session in progress:
Attacker doesn't have to guess passwords
Pretty obvious to affected user, however

Two types of session hijacking attacks:
Local attacks snoop streams via kernel
Remote attacks from third-party machines

Protecting Yourself

Patching is important, but it only protects
you from known vulnerabilities

Disabling services you're not using
protects you from as yet unknown attacks

Use firewalls at the network and host level
to control access and drop bogus traffic

Encrypt all network traffic with SSH, SSL,
IPSEC, or other strong VPN

Extra Credit Items

Use a strong, two-factor authentication
system for user access (expensive)

Abandon .rhosts files in favor of DSA
authentication via SSH (requires re-tooling)

Monitor system configurations with a tool
like AIDE or Tripwire™ (mgmt issues)

Stack Smashing

The History of Buffer
Overflows

First wide-spread buffer overflow attack
was the 1988 Morris Worm (fingerd)

Mudge's white paper in 1995 apparently
popularized the term "buffer overflow"

Buffer overflow exploits on Linux/Solaris
used to motivate Y2K DDoS attacks

Fully automated worms now automatically
infecting systems via these vulnerabilities

Process Memory

Text

Stack

Data
BSS
Heap

Program instructions (read-only)

Local subroutine data

Free/unallocated memory

"Constants" – literal strings/numbers

Global and persistent (static) variables

Dynamically allocated data

The Stack

Program Arguments
And Environment

Data for main()
Program

Stack Frame

Stack Frame One frame
added per
subroutine call

Stack Frame

Subroutine
Variables

Frame Pointer
Return Address
Subroutine Args

Instruction to
return to when
subroutine exits

Data copied into
buffers from top
of frame to bottom

Classic Buffer Overflow

Attacker constructs a string containing:
No-ops for padding
Machine code to exec("/bin/sh")
Bogus instruction addr pointing into subroutine data area

Subroutine is coerced into copying this string into
its data area, overwriting end of buffer

Subroutine exits and program follows bogus
address to execute shell

If program runs as root, attacker gets root shell

Classic Buffer Overflow (2)

Subroutine
Variables

Frame Pointer
Return Address
Subroutine Args

No-Ops

exec("/bin/sh")

Address
Pointer

strcpy()

Modified Attack

Sometimes subroutine buffer is too
small to hold exploit code

Exploit code can be put into an
environment variable

Subroutine return address set to
environment area at bottom of stack

Requires attacker have local machine
access…

Modified Attack (2)

Program Arguments
And Environment

Data for main()
Program

Stack Frame

Stack Frame

(1) Set Env

(2) Clobber
pointer

In General…

Attacker places code in program memory,
changes address pointer to jump to code

Places to put code:
Stack (per previous examples)
Heap
Data/BSS (if writable)

Ways to modify address pointer:
Stack overflow (per previous examples)
Format string attacks (see next slide)

Format String Attacks

Programmers are sometimes lazy:
printf("%s", str); # correct
printf(str); # lazy

If attacker can set str, then attacker
can embed output specifiers
In particular, %n writes a numeric
value to a specified memory address
Attacker can overwrite return address
pointer or other numeric value

Fixing Buffer Overflows

Fix the programs
Too many
New bugs being written daily

Fix the programmers
Too many
New programmers being made daily

Fix the stack

Fixing the Stack

Code normally resides in read-only text
area at beginning of program memory

Well-behaved programs should never
execute instructions off data stack

Modify kernel– attempts to execute from
stack cause program to abort

Requires cooperation of CPU hardware

Different Implementations

For Solaris, HP-UX, et al:
"Stack protection" only prevents executing
code off of stack pages
Can be thwarted by putting malicious code
into the heap area

OpenBSD (W^X) and Adamantix (PaX):
All writable pages marked as non-executable
(including heap area)
Can break applications written in high-level
languages (notably Java)

Compiler-Based Solutions

Subroutine
Variables

Frame Pointer

Return Address
Subroutine Args

"Canary"

Compiler inserts a random "canary"
value before address pointer

Canary value checked when
subroutine exits – abort if changed

Attacks which clobber return addr
pointer also clobber canary

Performance hit due to extra code
to insert/check canary values

How to Defeat Stack Protection

Put malicious code into heap data area
(at least for Solaris and HP-UX)

Force subroutine return to other call in
text segment, like system()

Overwrite expected subroutine args:
system()/exec() call wrong program
open() opens unexpected file

After the Attack

Back Doors

Having broken a system, the attacker
wants to make it easy to get back in

Often sshd or telnetd replaced, but
any networked or SUID binary will do

New version gives root shell when
special account and/or password used

Multiple back doors usually left behind
to "fake out" system admins

rootkits

Nowadays, attackers want to install IRC
servers, sniffers, DDOS tools, et al

Need much more intricate tools to cover
their tracks

rootkits are pre-packaged bundles of
software with tools and Trojans

New trend is rootkits that "harden" the
system and remove other rootkits!

Hiding Files

ls, dir, find, etc. all replaced to hide
attackers' files

Some rootkits use configuration files to
change behavior "on-the-fly"

Binaries are crafted to have the same
size (and same timestamps) as originals

Some files are installed "immutable" to
make them harder to remove

Hiding Processes

ps, top, lsof commands replaced
with versions to hide certain processes

Also need to modify kill, pkill,
killall and similar programs

Hiding Network Connections

New syslogd and tcpd will not log
connections from certain hosts/domains

ifconfig will not report that network
interfaces are in promiscuous mode

netstat will not show connections
from certain hosts/domains

Problems for Rootkit Authors

Too many binaries to replace:
Hard work
Greater chance of detection
Might miss one

Checksumming (with AIDE or Tripwire)
allows for easy detection

The Next Wave – Kernel Hacks

Suppose you could replace the
underlying kernel routines?

Single modification corrupts every
program on the system!

Modern Unix systems support dynamic
kernel modules– no reboot required!

New kernel rootkits can even attack via
/dev/kmem– no loadable modules!

What Do You Do?

Analyze system by first booting from OS
CD-ROM

All tools should be brought over on
read-only media (e.g., CD-ROM)

Reinstall system from scratch – don't
necessarily trust your backups

And Don't Forget…

Assume any passwords on compromised
system have been cracked off-line

If you believe packet sniffer was installed,
then all site passwords must change

Wrap Up

That's All Folks!

Any final questions/comments?
Please fill out your eval forms!
Thanks for listening!

Plenty of useful URLs to follow…

General Resources

SANS "Reading Room"
http://www.sans.org/rr/

CERT/CC "Tech Tips"
http://www.cert.org/tech_tips/

Center for Internet Security
http://www.CISecurity.org/

BUGTRAQ Mailing List Archives
http://www.securityfocus.com/

Details on Stack Smashing

The classic paper by Aleph1:
http://www.phrack.org/show.php?p=49&a=14

Format string attacks
http://www.securityfocus.com/guest/3342

Heap and BSS overflow paper:
http://w00w00.org/files/articles/heaptut.txt

libc redirection attacks:
http://hackersplayground.org/papers/stack.txt

Other Resources

Layered defense from OpenBSD 3.[34]:
http://www.openbsd.org/papers/csw03.mgp

Compiler-based stack protection:
StackGuard – http://www.immunix.org/
IBM – http://www.trl.ibm.com/projects/security/ssp/

Session hijacking tools:
Hunt – http://lin.fsid.cvut.cz/~kra/#HUNT
Ettercap – http://ettercap.sourceforge.net/

Rootkit Information

Links to detailed rootkit overviews:
http://www.chkrootkit.com/
http://biocserver.bioc.cwru.edu/~jose/shaft_analysis/node-analysis.txt

Functional kernel rootkits (Linux):
http://la-samhna.de/library/rootkits/list.html
http://www.phrack.org/show.php?p=58&a=7

