
Copyright © Hal Pomeranz and Deer Run Associates. All rights reserved.

Hal Pomeranz

hal@deer-run.com

@hal_pomeranz

1



2



3



If there's no bash_history when the shell exits, then the new bash_history that 

gets written is just the commands from the shell that's exiting.

What's perhaps more troubling is that you can modify the contents of 

bash_history and those modifications will be preserved. Integrity attacks are 

generally more insidious than availability attacks.

4



5



1. If you exit the shell without entering any commands, bash is actually smart 

enough not to write out bash_history again.

2. If you kill the root-owned sshd (the grandparent of the bash process), 

surprisingly little happens. That's because the user-owned sshd (the parent 

of the bash process) just keeps running. This is normal SSH behavior.

3. Not particularly related to bash_history, but if you "kill –INT …" a bash 

process you'll see a ^C pop up in the terminal window of that shell. The 

shell keeps running and there is no other impact.

4. When you "kill –ALRM …" the bash process nothing appears to happen. 

But as soon as the user hits <Enter> after the next command, the shell 

exits immediately and no bash_history is saved.

6



7



8



9



1. You end up with a "hybrid" file. The original, non-timestamped entries 

remain in the file without timestamps. The new commands from the shell 

with HISTTIMEFORMAT set are appended with timestamps.

2. You end up with the commands from the new shell being added without 

timestamps. So you can have "bands" of commands, some with and some 

without timestamps, depending on whether or not HISTTIMEFORMAT is 

set in each shell.

3. When bash loads bash_history at shell startup, it will use any timestamps it 

finds. So the timestamps in memory can end up "banded" just like the 

bash_history on disk. Entries without timestamps in bash_history are given 

the start-up time of the shell as their timestamp.

10



1. Timestamps don't count against HISTFILESIZE. So in this case all 500 

commands will be saved in bash_history along with their timestamps.

2. Er, well, not exactly. Looks like there's a bug in bash. The very first 

timestamp comment is incorrectly truncated away. So you end up with a file 

that's 999 lines long rather than 1000 as you might expect.

11



12



1. Not much happens with this one. In memory behavior is completely 

unaffected– you will be able to see all commands and timestamps in the 

output of linux_bash. When the shell exits, the data goes into /dev/null and 

is lost. But that also means any existing bash_history in the user's home 

directory will be preserved.

2. Again, no impact on what's going on in memory. What's interesting about 

this one is that the bash_history on disk is truncated immediately when 

HISTFILESIZE is set. This is the only time that I'm aware of that the 

bash_history gets written before shell exit.

3. Setting HISTSIZE=0 immediately destroys the history list in RAM–

linux_bash gives no output. That being said, string searching in RAM does 

find keywords from the loaded commands even after the history list is 

flushed. It's possible a carver could be written to recover this detail. 

bash_history is truncated to zero lines when the shell exits.

13



14


