
Detecting Malware With
Memory Forensics

Hal Pomeranz

SANS Institute

Why Memory Forensics?

Everything in the OS traverses RAM
• Processes and threads

• Malware (including rootkit technologies)

• Network sockets, URLs, IP addresses

• Open files

• User generated content

– Passwords, caches, clipboards

• Encryption keys

• Hardware and software configuration

• Windows registry keys and event logs

Memory Analysis Advantages

• Best place to identify malicious software activity
– Study running system configuration

– Identify inconsistencies (contradictions) in system

– Bypass packers, binary obfuscators, rootkits (including kernel mode)
and other hiding tools.

• Analyze and track recent activity on the system
– Identify all recent activity – in context

– Profile user or attacker activities

• Collect evidence that cannot be found anywhere else
– Memory-only malware

– Chat threads

– Internet activities

What is Memory Forensics?

• Study of data captured from memory of a target system

• Ideal analysis includes physical memory data (from RAM) as
well as Page File (or SWAP space) data

Acquire

• Capture Raw Memory

• Hibernation File

Context

• Establish Context

• Find Key Memory Offsets

Analyze

• Analyze Data For Significant Elements

• Recover Evidence

Windows Memory Acquisition

• LIVE System (RAM Acquisition)

• DumpIt.exe

– http://www.moonsols.com/2011/07/18/moonsols-dumpit-goes-mainstream/

• win32dd.exe / win64dd.exe

– Author: Matthew Suiche

– http://www.moonsols.com/products/

• Mandiant Redline

– http://www.mandiant.com/products/free_software/redline/

• DEAD System
– Hibernation File

• Contains a compressed RAM Image
• %SystemDrive%/hiberfil.sys

Win2k XP Win2003 VISTA Win2008
Windows

7

Virtual Machine Memory Acquisition

VMware (Fusion/Workstation/Server/Player)

 .vmem file = raw memory image

Microsoft Hyper-V

 .bin file = raw memory image

Parallels

 .mem file = raw memory image

VirtualBox

 .sav file = partial memory image

Extract Memory from Hibernation File
(hiberfil.sys)

• hibr2bin can acquire physical memory (RAM) from a Windows

hibernation file (XP and VISTA only)

– Pro Version Compatible with XP-Win7/2008 (32 and 64 bit)

hibr2bin.exe <input file> <output file>

• Location on COURSE DVD:

 D:\windows forensic tools\memory imaging\

• Example: Extract hibernation file memory and save to a USB DRIVE
 D:\> hibr2bin D:\hiberfil.sys E:\hibernation_memory.img

 ** Volatility can also convert hibernation files **

DLL Injection

Normal DLL Interaction

ntdll.dll

Kernel

Library Call

1

2 3

4
User space

Kernel space

DLL Injection

ntdll.dll

Kernel

Library Call

5 4

Rootkit
1

2

3

6

7

User space

Kernel space

Detecting Injection

• DLL injection is very common with modern malware
– VirtualAllocEx() and CreateRemoteThread()

– SetWindowsHookEx()

• Process hollowing is another injection technique
– Malware starts a new instance of legitimate process

– Original process code de-allocated and replaced

– Retains DLLs, handles, data, etc. from original process

• Code injection is relatively easy to detect
– Review memory sections marked as Page_Execute_ReadWrite

and having no memory-mapped file present

• Scan for DLLs (PE files) and shellcode

– Process image not backed with file on disk = process hollowing

Zeus / Zbot Overview

• Persistent malware designed to steal credentials

• Many variants. A popular one does the following:
– Copies itself to %system32%\sdra64.exe

– Injects code into winlogon.exe or explorer.exe
• Further injects code into every process but csrss & smss

– Auto-start path: HKLM\Software\Microsoft\Windows
NT\winlogon\userinit

– Creates local.ds & user.ds in %sytem32%\lowsec\

– Retrieves files from command and control server

– Mutant: _AVIRA_

– Hooks over 50 system APIs

Using Mandiant Redline

Information Pane

Process View

Host View

Guided Analysis

Detecting Code Injection:
Zeus/Zbot DLL Injection

Detecting Code Injection:
Finding Injected Sections

Volatility

• Command-line memory forensic tool

• Primarily Windows-focused

• Linux (Android) & Mac support now available

• Modular, portable

Help!

• The –h flag gives configuration information in Volatility

– Used alone it identifies the version, currently loaded plugins, and
common parameters

• Use –h with a plugin to get details and plugin-specific usage

Code Injection
ldrmodules

• DLLs are tracked in three different linked lists for each process. Stealthy
malware can unlink loaded DLLs from these lists. This plugin queries each
list and displays the results for comparison.

Purpose

• Verbose -- show full paths from each of the three DLL lists (-v)
• Show information for specific process IDs (-p)

 Important Parameters

• Most loaded DLLs will be in all 3 lists, having a “1” in each column.

• Legitimate entries may be missing in some of the lists

• e.g. the process executable will not be present in the “InInit” list

• If an entry has no “MappedPath” information it is indicative of an injected
DLL not available on disk (usually bad)

Investigative Notes

Rootkit Detection
apihooks

• Detect inline and Import Address Table function hooks used by
rootkits to modify and control information returned

Purpose

• Operate only on these process IDs (-p PID)

• Scan kernel modules instead of user-mode objects (-k)

 Important Parameters

• A large number of legitimate hooks can exist, weeding them out
takes practice and an eye for looking for anomalies

• This plug-in can take a long time to run due to the sheer number
of locations it must query – be patient!

Investigative Notes

Analyzing Process Objects:
malfind

• Scans process memory sections looking for indications of code injection.
Identified sections are extracted for further analysis.

Purpose

• Directory to save extracted files (--dump-dir=directory)
• Show information for specific process IDs (-p PID)
• Use psscan to find processes = more rigorous (-s)

• Search using YARA rules (-y YARA rules file)
• Scan kernel modules/drivers using Yara Rules (-K)

 Important Parameters

• While malfind has an impressive hit rate, false positives do occur

• Disassembled code provided can be helpful as a sanity check

• You may see multiple injected sections within the same process

• Dumped sections can be reverse engineered or sent to A/V

Investigative Notes

Process Hiding

EPROCESS Linked List

smss.exe

wscntfy.exe

wordpad.exe

csrss.exe lsass.exe winlogon.exe

svchost.exe

explorer.exe

calc.exe

wordpad.exe svchost.exe svchost.exe taskmgr.exe

cmd.exe

Hiding a Process

smss.exe

wscntfy.exe

wordpad.exe

csrss.exe lsass.exe winlogon.exe

svchost.exe

explorer.exe

calc.exe

wordpad.exe svchost.exe svchost.exe taskmgr.exe

cmd.exe

Rootkit Detection
psxview (FU Rootkit)

PID 1608 (svchost.exe)
hidden via DKOM

Stop Pulling the Plug

Wrapping Up

• Any final questions?

• Thanks for listening!

Hal Pomeranz SANS Institute
hal@sans.org Twitter: @hal_pomeranz
http://computer-forensics.sans.org/blog/author/halpomeranz/

http://www.sans.org/security-training/instructors/Hal-Pomeranz

http://www.deer-run.com/~hal/

